
 51

 ISSN 1392 - 1215  ELEKTRONIKA  IR  ELEKTROTECHNIKA. 2005. Nr. 3(59) 
 
 

T 121  SIGNALŲ TECHNOLOGIJA 
 
 

A Method for Measuring an Electric Conductivity Tensor of Plane 
Media 

 
J. Kleiza 
Vilnius Gediminas Technical University, Saulėtekio 11, LT-10223 Vilnius, Lithuania,  e-mail: kleiza@mail.tele2.lt 
V. Kleiza 
Kaunas University of Technology, Daukanto 12, LT-35209 Panevėžys, Lithuania, e-mail: vytautas.kleiza@ktl.mii.lt  
 
 
Introduction 
 
 Thin layer structures are wide used in the 
contemporary microelectronic technique devices, therefore 
investigations of the later by solid body physical methods 
acquire ever more important significance [1]. Thin layers 
of ordered structure (first of all monocrystalline) are of 
particular importance, since many physical effects in such 
layers distinguish themselves by a good repeatability. Thin 
films of ordered structure, obtained by epitaxy methods (by 
growing a layer on a monocrystalline substrate or inducing 
crystallite orientation by an electric field acting in the 
plane of the substrate), most frequently are anisotropic 
relative to electric conductivity, therefore their specific 
electric conductivity is completely defined by a tensor.  
 
The specific conductivity tensor  
 
 In order to determine electric conductivity of an 
isotropic substance, it is customary to apply the following 
method: a rectangle-shaped sample of a, b dimensions is 
prepared with electrodes κ1, κ2 (Fig. 1). fixed on its 
opposite sides.  
 

 
Fig. 1. The sample to investigate the specific conductivity of 
an isotropic substance 
 

Having applied voltage V between the electrodes, we 
measure the current intensity I, and then the specific 
conductivity of the substance is calculated by the formula  
 

a I
b h V

σ =  

where h is thickness of the sample. 
 If the sample substance has anisotropic electric 
conductivity, then the latter is defined by a symmetrical 
tensor of specific conductivity  
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The components ijσ  of which are functions of the 
angle θ, made by the sides of rectangle with the principal 
axes of tensor σ : 
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here 1 2,σ σ − are specific conductivities along the principal 
axes, i.e., if the angle 0θ =  or 2θ π=  then 
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besides, if 1 2σ σ= , then the conductivity in all directions is 
the same and it is defined by one number σ1 (the case of 
isotropic conductivity). 

In general case (2) ( 1 2σ σ≠ ) only the tensor trace 
trσ  and determinant 2detσ δ=  (invariants of tensor σ) 
do not depend on the angle θ  
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The problem of potential distribution 
 
 Let as consider the distribution of electric field 
potential ( , )x yϕ ϕ=  in a rectangle-shaped sample. If the 
medium is isotropic or anisotropic and the angle  

, 0, 1, 2,...
2

k kπθ = = ± ± , 

then the potential isolines make up a beam of parallel lines, 
and in the opposite case, the isolines become curves. If the 
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lengths of the sides on which the electrodes are arranged, 
are short in comparison with that of other sides ( b a� ), 
then the shape of the central part isolines of the plate is 
approximate to straight lines.  
 With a view to establish their arrangement at least 
approximately, we formulate a boundary problem [2], the 
solution of which describes the distribution of the potential 
in the sample G with anisotropic conductivity (Fig. 1)  
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here Γ is in the contour of domain G, κ  is the part of 
contour in which the contacts are arranged, and n is a unit 
vector of the contour normal. Note that the first differential 
operator of boundary problem (3) includes only the second 
order derivatives, i.e.,  
 

11 12 22div grad 2xx xy yyσ ϕ σ ϕ σ ϕ σ ϕ= + + , 
 

Therefore each linear function 1 2 0( , )x y c x c y cϕ = + +  
is the solution to the div grad 0σ ϕ = . By choosing the 
numbers ci ( 0,1,2i = ) so that the boundary conditions  
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be satisfied and symmetry of the solution  
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be retained, we have an approximate solution of problem 
(3) 
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Based on this expression of the potential, the current 
intensity in the sample is 
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here i is the ort vector of the axis of abscissas of the 
coordinate system{ , }x y . 

Now let as go back to the main problem, i.e., to 
finding the components of the tensor σ (by taking physical 
measurements). If during the experiment the current 
intensity I0 is measured as well as the appearing 0ϕ∆  
(Fig. 2), then, in view of solution (4) we have that the 
components of the tensor are connected: 
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Indeed, if the determinant δ2 of the tensor were 

known, we could find all the components 11 22 12, ,σ σ σ  
single-valued from the equations (4). 
 
 

Fig. 2. The sample to determinate the conductivity of an 
anisotropic substance (longitudinal current) 
 
Calculation of the determinant of the specific 
conductivity tensor  
 

One can approximately calculate the determinant of 
the tensor after carrying out such an experiment: in the 
presence o voltage between the contacts κ1 and κ2, to 
measure the intensity I1 of current and the appearing 
difference ∆φ1 of potentials between κ3 and κ4 (Fig. 3a). 
Afterwards, the experiment is repeated by using other pairs 
of contacts, i.e., by measuring the quantities I2 and ∆φ2 
(Fig. 3b), respectively. Having found the values of the 
quantities mentioned, the unknown quantity detδ σ=  is 
obtained as the solution of the equation [3]: 
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 This equation always has the unique solution that can 
be found by applying the rapidly an unconditionally 
converging Newton method, choosing he initial value 
δ(0)=0.  
 Equation (5) is well known in the Hall effect theory 
and with sufficiently short lengths of electrodes it defines 
the conductivity of an isotropic medium  
 

detσ δ σ= = . 
 
When investigating the case of an anisotropic substance, 
the latter is reduced to an equivalent isotropic one, after 
transforming the variables in boundary problem (3)  

11 12 ,x y yξ σ σ η δ= − = .   (6) 

Then the rectangle-shaped domain G becomes a 
parallelogram H. In addition, if we define the conductivity 
in the domain G by tensor (1), and in the domain H by the 
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number detδ σ= , then all the electrical characteristics 
(potential of the electrical field and density of the current) 
becomes equal at the respective points of domains G and H 
(taking in to account transformation (6)), therefore 
equation (5) can be applied in the calculation of anisotropic 
conductivity parameters (components of the conductivity 
tensor).  
 

a) 

b) 
Fig. 3. The sample to determinate the conductivity of an 
anisotropic substance (transversal current) 
 
Calculation of components of the conductivity tensor  
 
 Having measures the differences 0 1 2, ,ϕ ϕ ϕ∆ ∆ ∆  of 
potentials and current intensities 0, 1, 2I I I  in the above 
experiment, one can find the solution of equation (5), i.e., 

detσ , and by (4) all the components of the tensorσ : 
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Fig. 4. Relative errors (8) of the tensor components. The numbers 
in the graph show ratio a/b between the side lengths of rectangle. 

Evaluation of error of the method 
 
 Making use of formulas (7) we can approximately 
calculate the components of the specific conductivity 
tensor. The main reasons for emergence of errors of such 
method are an assumption on the linear potential 
distribution in the central part of the sample and the fact 
that nonzero length electrodes are used in the experiment.  
 

.  

 

 
Fig. 5. Errors ij ijσ −σ%  of the tensor components. The numbers 
in the graph show ratio a/b between the side lengths of rectangle. 

 
 The values of these errors are estimated after making 
imitative models of experiments and after calculating the 
differences 0 1 2, ,ϕ ϕ ϕ∆ ∆ ∆  of potentials as well as current 
intensities 0, 1, 2I I I . If 11 12 22, ,σ σ σ  are exact values of 

the tensor σ  components, and 11 12 22, ,σ σ σ% % %  are the 
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calculated ones according to (7), then, having defined a 
relative error  
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One can observe its variation dependent on the angle θ and 
on the values (2) of the main conductivities 1 2,σ σ .  

The relative errors mentioned are illustrated in Fig. 4, 
where principal values of the specific conductivity tensor 
are 1 23, 1σ σ= = , and the ratios  a/b between the sides of 
a rectangle shaped domain are equal to 2, 3, 4, 5, 
respectively, while the lengths of central electrodes κ3, κ4 
do not exceed b/20. Fig. 5 demonstrates the dependence of 
the error ij ijσ σ− %  of each component on its value ijσ .  

In the general case, based on the described error 
emergence reasons and formulas (6) of reduction to the 
isotropic case, we can assert that the relative error (8) I 
determined by the following parameters: 

1. Extensibility of sample, i.e., the ratio a/b  
2. Measure of conductivity anisotropy: 

( )1 2 2 1max ,σ σ σ σ , 
i.e., the error will be lower under the higher ratio a/b and 
the lower value of the anisotropy measure. 
 
Conclusions 
 
 1. The method for calculating the specific 
conductivity tensor of an anisotropically conductive 
medium, proposed in this paper, distinguishes itself by the 
simplicity of physical measurements: it suffices to make an 
equally thick rectangle-shaped sample with four electrodes 

fixed on its sides and to take various measurements of 
current intensity and differences of potentials. 

2. The necessary mathematical calculations can be 
promptly performed, even without using a complex 
computing technique.  
 3. The accuracy of the results obtained depends on 
the dimensions a and b of the sample and on the ratios of 
the conductivity tensor components 1σ and 2σ . For 
example, if / 3a b ≥ , then the relative error does not 
exceed 5% for every substance, the anisotropy measure of 
which is ( )1 2 2 1max / , / 3σ σ σ σ ≤ . 
 4. By applying this method, it is possible to calculate 
the second invariant of the specific conductivity tensor in 
the investigation of the sample of any shape, because 
equation has been obtained independent of geometry of the 
sample.  
 
References 
 
1. Qiu H., Wang F., Wu P., Pan L., Li L., Xiong L., Tian Y. 

Effect of deposition rate on structural and electrical properties 
of Al films deposited on glass by electron beam evaporation 
// Thin Solid Films. 2002. –Vol. 414, Iss. 1.– P. 150-157. 

2. Kleiza V., Kleiza J., Žilinskas R. Determination of 
conductivity tensor of a plain anisotropic media // Doklady 
Academii Nauk SSSR.  1991. – Nr. 5(320). – P.1093-1096. 

3. A. A. Ramadan, R. D. Gould and A. Ashou. On the Van 
der Pauw method of resistivity measurements // Thin Solid 
Films. 1994. – Vol. 239, Iss. 2. – P. 272-275. 

 
 

Pateikta spaudai  2005 03 15 
 

 
J. Kleiza, V. Kleiza. Plokščios terpės elektrinio laidumo tenzoriaus matavimo metodas // Elektronika ir elektrotechnika. – 
Kaunas: Technologija, 2005. – Nr. 3(59) – P. 51 –54. 

Pasiūlytas anizotropiškai laidžios terpės savitojo laidumo tenzoriaus matavimo metodas pasižymintis fizikinių matavimų 
paprastumu: pakanka pagaminti vienodo storio stačiakampio formos bandinį su pritvirtintais jos kraštinėse keturiais elektrodais ir atlikti 
įvairius srovės stiprio ir potencialų skirtumo matavimus. Be to, būtinus skaičiavimus galima atlikti greitai, nesinaudojant sudėtinga 
skaičiavimo technika. Gaunamų rezultatų tikslumas priklauso tik nuo bandinio matmenų ir tenzoriaus komponenčių santykių. Il.5, bibl.3 
(anglų kalba; santraukos lietuvių, anglų ir rusų k.). 
 
J. Kleiza, V. Kleiza. A Method of Measuring Electric Conductivity Tensor of a Plane Media // Electronics end Electrical 
Engineering. – Kaunas: Technologija, 2005. – No. 3(59) – P. 51 –54. 

The method for calculating the specific conductivity tensor of an anisotropically conductive medium, proposed in this paper, 
distinguishes itself by the simplicity of physical measurements: it suffices to make an equally thick rectangle-shaped sample with four 
electrodes fixed on its sides and to take various measurements of current intensity and differences of potentials. The necessary 
mathematical calculations can be promptly performed, even without using a complex computing technique. The accuracy of the results 
obtained depends on the dimensions of the sample and on the ratios of the conductivity tensor components. Ill. 5, bibl. 3 (in English; 
summaries in Lithuanian, English and Russian). 
 
Й. Клейза, В. Клейза. Метод измерения тензора электрической проводимости плоской среды // Электроника и 
электротехника. – Каунас: Технология, 2005. – № 3(59) – C. 51 –54. 

Предложен метод измерения тензора удельной электрической проводимости плоской анизотропной среды обладающий 
простотой физических измерений: достаточно изготовить образец постоянной толщины и прямоугольной формы с четырьмя 
электродами прикрепленными по его сторонам и произвести несколько измерений тока и разности потенциалов. Кроме этого, 
необходимые расчеты достаточно просты и их можно произвести пользуясь несложной вычислительной техникой. Точность 
результатов зависит от отношения размеров образца и отношения компонент тензора. Ил.5, библ. 3 (на английском языке; 
резюме на литовском, английском и русском яз.). 
 


