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Introduction

Thin layer structures are wide used in the
contemporary microelectronic technique devices, therefore
investigations of the later by solid body physical methods
acquire ever more important significance [1]. Thin layers
of ordered structure (first of all monocrystalline) are of
particular importance, since many physical effects in such
layers distinguish themselves by a good repeatability. Thin
films of ordered structure, obtained by epitaxy methods (by
growing a layer on a monocrystalline substrate or inducing
crystallite orientation by an electric field acting in the
plane of the substrate), most frequently are anisotropic
relative to electric conductivity, therefore their specific
electric conductivity is completely defined by a tensor.

The specific conductivity tensor

In order to determine electric conductivity of an
isotropic substance, it is customary to apply the following
method: a rectangle-shaped sample of @, b dimensions is
prepared with electrodes x;, x, (Fig. 1). fixed on its
opposite sides.
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Fig. 1. The sample to investigate the specific conductivity of
an isotropic substance

Having applied voltage V" between the electrodes, we
measure the current intensity I, and then the specific
conductivity of the substance is calculated by the formula
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where / is thickness of the sample.

If the sample substance has anisotropic electric
conductivity, then the latter is defined by a symmetrical
tensor of specific conductivity
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The components o, of which are functions of the
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angle 6, made by the sides of rectangle with the principal
axes of tensor o :
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here o,, o, — are specific conductivities along the principal
axes, i.e., if the angle # =0 or 6 =1x/2 then
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besides, if o, = o, , then the conductivity in all directions is
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the same and it is defined by one number o, (the case of
isotropic conductivity).
In general case (2) (o, #0,) only the tensor trace

tro and determinant deto = &> (invariants of tensor o)
do not depend on the angle 6

tro=0,,+0, =0,+0,,

deto = 0,,0,, -0}, = 0,0,.
The problem of potential distribution

Let as consider the distribution of electric field
potential ¢ =@(x,y) in a rectangle-shaped sample. If the

medium is isotropic or anisotropic and the angle

0= k%, k=0,41,42,...,

then the potential isolines make up a beam of parallel lines,
and in the opposite case, the isolines become curves. If the



lengths of the sides on which the electrodes are arranged,
are short in comparison with that of other sides (b a),
then the shape of the central part isolines of the plate is
approximate to straight lines.

With a view to establish their arrangement at least
approximately, we formulate a boundary problem [2], the
solution of which describes the distribution of the potential
in the sample G with anisotropic conductivity (Fig. 1)

divogradp =0, (x,y)€G,
A3)

@| =const,

(o grad @), |r\=0,

here I' is in the contour of domain G, x is the part of
contour in which the contacts are arranged, and » is a unit
vector of the contour normal. Note that the first differential
operator of boundary problem (3) includes only the second
order derivatives, i.e.,

divogradgp =00, + 20—12¢xy +0,9,

Therefore each linear function ¢(x,y)=cx+c,y+c,
is the solution to thedivogradg=0. By choosing the
numbers ¢; (i =0,1,2) so that the boundary conditions

(O' grad (/7),, | re=0n@, + 0,0, | r=0
be satisfied and symmetry of the solution
oal/2+x,b/2+y)=V—-p(a/2—x,b/2-y)

be retained, we have an approximate solution of problem
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Based on this expression of the potential, the current
intensity in the sample is

b b
I, = j(agradg))idy = Ian‘px +O—12¢ydy =
0 0
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here i is the ort vector of the axis of abscissas of the
coordinate system {x, y} .

Now let as go back to the main problem, i.e., to
finding the components of the tensor o (by taking physical
measurements). If during the experiment the current
intensity I, is measured as well as the appearing Ag,
(Fig. 2), then, in view of solution (4) we have that the
components of the tensor are connected:
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A@, = p(al2,0)-p(a/2,b) =Vbo,,[ac,,,
1, = Vbéz/aazz,
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Indeed, if the determinant &° of the tensor were
known, we could find all the components o,,, 0,,, 0,

single-valued from the equations (4).
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Fig. 2. The sample to determinate the conductivity of an
anisotropic substance (longitudinal current)

Calculation of the determinant of the specific
conductivity tensor

One can approximately calculate the determinant of
the tensor after carrying out such an experiment: in the
presence o voltage between the contacts x; and #;, to
measure the intensity /; of current and the appearing
difference Ag, of potentials between x; and x4 (Fig. 3a).
Afterwards, the experiment is repeated by using other pairs
of contacts, i.e., by measuring the quantities /, and Ag,
(Fig. 3b), respectively. Having found the values of the

quantities mentioned, the unknown quantity & =+/deto is
obtained as the solution of the equation [3]:

exp (—ﬂh5Mj +exp (—ﬂhé‘ Mj =1.
L I

)

This equation always has the unique solution that can
be found by applying the rapidly an unconditionally
c(%r)lverging Newton method, choosing he initial value
0'=0.

Equation (5) is well known in the Hall effect theory
and with sufficiently short lengths of electrodes it defines
the conductivity of an isotropic medium

o=0=A/deto .

When investigating the case of an anisotropic substance,
the latter is reduced to an equivalent isotropic one, after
transforming the variables in boundary problem (3)

¢ =Xx011=YOyp, N=Y0. (6)
Then the rectangle-shaped domain G becomes a
parallelogram H. In addition, if we define the conductivity
in the domain G by tensor (1), and in the domain H by the



number 6 = Vdeto , then all the electrical characteristics
(potential of the electrical field and density of the current)
becomes equal at the respective points of domains G and H
(taking in to account transformation (6)), therefore
equation (5) can be applied in the calculation of anisotropic
conductivity parameters (components of the conductivity
tensor).
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Fig. 3. The sample to determinate the conductivity of an
anisotropic substance (transversal current)

Calculation of components of the conductivity tensor

Having measures the differences Agy, A, Ap, of
potentials and current intensities /o /; I, in the above
experiment, one can find the solution of equation (5), i.e.,
Jdeto , and by (4) all the components of the tensor o :
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Fig. 4. Relative errors (8) of the tensor components. The numbers
in the graph show ratio a/b between the side lengths of rectangle.
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Evaluation of error of the method

Making use of formulas (7) we can approximately
calculate the components of the specific conductivity
tensor. The main reasons for emergence of errors of such
method are an assumption on the linear potential
distribution in the central part of the sample and the fact
that nonzero length electrodes are used in the experiment.
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Fig. 5. Errors 64.,. —0,; of the tensor components. The numbers

in the graph show ratio a/b between the side lengths of rectangle.

The values of these errors are estimated after making
imitative models of experiments and after calculating the
differences Agy, Ag;, A, of potentials as well as current

intensities /o I} I, . If o1y, 015,09, are exact values of

the tensor o components, and Gy, Gjp, 0y, are the



calculated ones according to (7), then, having defined a  fixed on its sides and to take various measurements of

relative error current intensity and differences of potentials.
2. The necessary mathematical calculations can be
- \2 - \2 -\ promptly performed, even without using a complex
\/(G“ ~6u) *(92-6) +(0n=62) 100% (8)  computing technique
. A .
1/5-121 +5—122 +5—222 3. The accuracy of the results obtained depends on

the dimensions a and b of the sample and on the ratios of

One can observe its variation dependent on the angle §and ~ the conductivity tensor components o,and o,. For

on the values (2) of the main conductivities oy, 0, . example, if a/b>3, then the relative error does not
The relative errors mentioned are illustrated in Fig. 4,  €xceed 5% for every substance, the anisotropy measure of

where principal values of the specific conductivity tensor ~ which is max (o, /0,, 0,/0,)<3.

are 0, =3, 0, =1, and the ratios a/b between the sides of 4. By applying this method, it is possible to calculate

a rectangle shaped domain are equal to 2, 3, 4, 5, the second invariant of the specific conductivity tensor in

respectively, while the lengths of central electrodes x3, x4  the investigation of the sample of any shape, because

do not exceed b/20. Fig. 5 demonstrates the dependence of ~ equation has been obtained independent of geometry of the

the error o;; —0;; of each component on its value o; . sample.

In the general case, based on the described error
emergence reasons and formulas (6) of reduction to the

isotropic case, we can assert that the relative error (8) I~ | Qiu H., Wang F., Wu P., Pan L., Li L., Xiong L., Tian Y.
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[pemnosxkeH MeToN W3MEPEHHsl TEH30pa yIEeIbHON JJIEKTPHYECKON MPOBOJUMOCTH IUIOCKOW aHM30TPOIHON Cpeibl 00Jamaromui
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