
25

ELECTRONICS AND ELECTRICAL ENGINEERING
ISSN 1392 – 1215 2009. No. 7(95)

ELEKTRONIKA IR ELEKTROTECHNIKA

AUTOMATION, ROBOTICS

T125
AUTOMATIZAVIMAS, ROBOTECHNIKA

Analysis of Unpredictable Cryptographic Pseudo-random Number
Generator based on Non-linear Dynamic Chaotic System

A. Čitavičius, A. Jonavičius
Department of Electronics and Measurements Systems, Kaunas University of Technology,
Studentų str. 50, LT-51368 Kaunas, Lithuania, phone: +370 37 300539; e-mail: Algimantas.Citavicius@ktu.lt

Introduction

Random number generators (RNG) are gaining more
and more interest due, in particular, to the increasing usage
of cryptography, where they represent a critical point [1].
However, designing a good RNG is a difficult task. So
usage of pseudo random number generators (PRNG) for
cryptography seems to be perspective. However, it is
important that the numbers used to generate cryptographic
keys are not just seemingly random; they must be as much
unpredictable as possible. In [2] we presented some
original construction of cryptographic secure PRNG based
on certain construction of non-linear dynamic chaotic
system. The constructed generator has a complex structure
and thus has a considerable good backward and forward
unpredictability feature. This cryptographic secure PRNG
consists of two main parts:

1. The auxiliary generator (AG), based on two linear
congruential generators;

2. The non-linear dynamic chaos system (NLDCS).
As the NLDCS the generator of the formula

1
(1)(1 1 /) (1)

t t t
x x x

 
 


     (1)

was proposed. Here  is an integer in the range 41   ,

)1,0[ Xxt . The set X can be interpreted as a set of

float numbers in computer presentation. The theoretical
background for this PRNG construction is presented in [2].
To perform an analysis of the generator we used
MATLAB/SIMULINK software. A functional model was
developed using SIMULINK and results were processed
using MATLAB.

Many test suites have been developed in the last years
in order to check the quality of a RNG or PRNG. They are
known as statistical tests for randomness, while, in fact,
they are tests for non randomness. They analyze a
sequence, assuming that it has been randomly generated,
and try to refuse this hypothesis looking for some pattern.
They also have to be interpreted in a statistical way, i.e.,
they are not pass/fail tests, but they say that the tested
generator can be considered random or not, only with a
certain probability.

For the research the SP 800-22 test suite from
National Institute of Standard and Technology (NIST) [3]
was chosen. This suite is composed of several different
well known tests, each of them is applied to the same
sequence of n bits (the NIST suggests n = 106) and gives a
P-value i. e. the probability that the sequence under test is
random. If a P-value for a test is determined to be equal to
1, then the sequence appears to have perfect randomness.
A P-value of zero indicates that the sequence appears to be
completely non random.

Zeros and ones bits generation

The probability density function of the pseudo
random bits must be uniform, so it is necessary to establish
a certain level in order to decide for which xn a zero or a
one is generated. If we have the distributions that have
symmetrical probability density functions, the answer is
clear: choosing the mean of the xn values will assure the
generation of the same numbers of bits according to the
following formula [4]:










,,1

,,0

xx

xx
b

n

n
n (2)

where x denotes the mean value, bn – the bit generated by
the n-th iteration of proposed PRNG.

The next way to get zeros and ones is to evaluate the
median of the value set. Median should be the most
suitable statistical characteristic that may split the bits
domain into two equally filled sub-domains with equal
number of zeros and ones bits. The criterion for generation
of a one or a zero bit becomes in this case:










,,1

,,0

medx

medx
b

n

n
n (3)

where med denotes the median of the values generated by
the NLDCS.

After some research a different way for generation of
ones and zeros have been chosen, because the quality of
produced bits was not satisfied. PRNG based on NLDCS

26

generates a set of float numbers. So according to IEEE 754
standard we used double precision floating point format to
encode float numbers to binary format. The structure of
this format is shown in Fig 1.

Fig. 1. IEEE 754 Double Floating Point Format

Using this encoding procedure we get some
advantages. First, from one float number we can get 64
bits, therefore, we increase bit generation performance.
Second, as we will show below, bits encoded by this
schema pass NIST test suite. Actually, to get more
randomness, from 64 bits we removed the highest 16 bits
(2 bytes), because they represent sign, exponent and
mantissa highest bits and they usually are not random. So
we get 48 bits, which we use for testing purposes.

Statistical tests for randomness

The considered NIST Test Suite is a statistical
package consisting of 15 tests that were developed to test
the randomness of arbitrarily long binary sequences
produced by either hardware or software based
cryptographic RNGs or PRNGs. These tests focus on a
variety of different types of non-randomness that could
exist in a sequence. The 15 tests are [3]:

1. The Frequency (Monobit) Test,
2. Frequency Test within a Block,
3. The Runs Test,
4. Test for the Longest-Run-of-Ones in a Block,
5. The Binary Matrix Rank Test,
6. The Discrete Fourier Transform (Spectral) Test,
7. The Non-overlapping Template Matching Test,
8. The Overlapping Template Matching Test,
9. Maurer's “Universal Statistical” Test,
10. The Linear Complexity Test,
11. The Serial Test,
12. The Approximate Entropy Test,
13. The Cumulative Sums Test,
14. The Random Excursions Test, and
15. The Random Excursions Variant Test.
For each statistical test, a set of P-values

corresponding to the set of sequences is produced. For a
fixed significance level a certain percentage of P-values
are expected to indicate failure. For example, if the
significance level is chosen to be 0,01 (i.e., α = 0,01), then
about 1% of the sequences are expected to fail. A sequence
passes a statistical test whenever the P-value ≥ α and fails
otherwise. The parameter α denotes the significance level
that determines the region of acceptance and rejection. We
use α = 0,01 as suggested by NIST. A statistical test is
formulated to test a specific null hypothesis (H0). The null
hypothesis under test is that the sequence being tested is
random against the alternative hypothesis (H1) for which
the sequence is not random. We can commit two errors:

1. Reject H0 when the sequence is generated by a
perfect random generator (Type I error);

2. Accept H0 when the sequence is generated by a
generator that is non random (Type II error).

Testing NLDCS as a pseudo random bit generator

As mentioned above, to create a model of our
generator we used MATLAB/SIMULINK software. The
functional diagram of our generator is shown in Fig 2.

1
() mod

t t
z az b q


 

1
() mod

t t
z az b q


 

()x

()y

(,)x y

(,)x y

Fig. 2. Functional diagram of our PRNG

Two linear congruential generators (LCG1 and
LCG2) represent AG. Linear congruential generator
generates random numbers, which are divided by modulo
m and we get bits according to formula (2). After that, each
n bit sequence is mapped to n bit of other generator.
Because parameter β value must be integer value in the
range 1 β 4, mapped bits are then transformed to
decimal code by using “Bit to integer converter”, and
additionally the constant equal to 1 is added. Next, β value
is transmitted to NLDCS. The generation function of
formula (1) with different values of β is shown in Fig. 3
and the histogram of produced numbers is shown in Fig. 4.

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 

2 

3 

4 

Fig. 3. The generation function of formula (1) with different
values of β, xi (0; 1)

Fig. 4. The histogram of the produced numbers generated by our
PRNG, xi  (0; 1)

27

One can see from the histogram (Fig. 4) that numbers
produced by generator are not uniformly distributed. To
flatten histogram we decided to choose narrower interval
to generate float numbers. The interval [0,2; 0,8] was
chosen and after the narrowing histogram domain, we
obtained a more flattened histogram as shown in Fig. 5.

T
o

ta
l

Fig. 5. The histogram of the produced numbers generated by our
PRNG, xi [0,2; 0,8]

One way to increase randomness is to choose a
narrower interval. However, the time needed to get the
numbers is longer in this case. To check the quality of our
PRNG and get a rough impression of generator's
performance we created an appropriate the two-
dimensional visualization of the numbers it produces [5].
This visualization is usually cold bit map and it is
presented in Fig. 6. For chosen interval [0,56; 0,6] lattice
structure of our generator is not visible. So, the key
question now is to decide, if the PRNG with narrowed
domain passes the tests for randomness.

0,565 0,57 0,575 0,58 0,585 0,59 0,595 0,60,6

0,565

0,57

0,575

0,58

0,585

0,59

0,595

0,6

xi

x
i+

1

Fig. 6. The bit map of the float numbers generated by our
PRNG, xi [0,56; 0,6]

An alternative way to flatten the histogram is to use
some kind of approximation function. However, this way
is more sophisticated. According to the results of our
experiments, choosing the interval of our PRNG’s
generated numbers in the range [0,2; 0,8] and using
described above float number to bit encoding schema we
get suitably random bits that pass NIST statistical test
suite.

The usual way to test a random or pseudo-random
number generator is to generate a sequence of n bits and

analyze it with the NIST test suite. As recommended by
NIST we generated n=106 bits and analyzed them using
NIST statistical test suite [3]. The results of one n=106 bits
sequence is presented in Table 1. One can see that all P-
values are greater than α value (we used α = 0,01 as
suggested by NIST). So this bit sequence passes NIST
statistical test suite.

Table 1. Results of NIST Statistical Tests. Number of sequences
N=1, size of sequence n=106 bits

Nr. Statistical Test P-value
1 Frequency Monobit 0,875743
2 Block Frequency (M =128) 0,465315
3a Cumulative Sums (Forward) 0,647463
3b Cumulative Sums (Backward) 0,793273
4 Runs 0,788043
5 Longest Runs of Ones 0,672935
6 Binary Matrix Rank (M = 32) 0,908927
7 Spectral DFT 0,301862
8 Non-periodic Templates (m=1) 0,490959
9 Overlapping Templates 0,812349
10 Maurer’s Universal(L=7, Q=1280) 0,718202
11 Approximate Entropy 0,046560
12 Random Excursions (x = +4) 0,242211
13 Random Excursions Variant (x=-3) 0,028403
14 Linear Complexity (M = 1024) 0,301757
15a Serial (m = 16) 0,873099
15b Serial (m = 16) 0,960443

Actually, some of the tests of the suite compute two
(the Cumulative Sum and the Serial tests) or more (Non-
Overlapping Template Matching, Random Excursion and
Random Excursion Variant) P-values, however, it is very
common considering only one of them.

However, we have always to remember about the
possibility to commit a Type I or Type II error [6]. For
example a periodic (and thus, non random) generator
always passes the Frequency Test if the number of 1s and
of 0s in the period is balanced. To overcome the impasse, a
more intensive test is necessary, involving a number N of
different sequences generated by the RNG under test.
NIST suggests a strategy to check, if the P-values are
uniformly distributed in the interval [0; 1] [3]. NIST
recommends to conduct a chi-square test on the P-values,
dividing the interval [0;1] into 10 sub-intervals. This tests
the uniformity of the P-values. The degree of freedom is 9
in this case. If we define Fi as the number of occurrences

that the P-value is in the i-th interval, then
2

 statistic is

210
2

1

(/10)

/10

i

i

F s

s





  , (4)

where s denotes the sample size. Following NIST
recommendation and choosing significance level equal to
0,01% (i.e. 0,0001), the acceptance region of statistics will

be
2

33, 72  .

To get more reliable results we tested N=100 different
sequences with n=106 bits. Table 2 shows the results of a
chi-square test on the P-values as described above.

28

Table 2. Results of sequences uniformity check

Nr. Statistical Test  2 value

1 Frequency Monobit 17,6
2 Block Frequency (M =128) 14,6
3a Cumulative Sums (Forward) 10,8
3b Cumulative Sums (Backward) 14,2
4 Runs 6,4
5 Longest Runs of Ones 5,8
6 Binary Matrix Rank (M = 32) 10,8
7 Spectral DFT 6,6
8 Non-periodic Templates (m=1) 14,2
9 Overlapping Templates 4,4
10 Maurer’s Universal(L=7,Q =1280) 5,4
11 Approximate Entropy 11,8
12 Random Excursions (x = +4) 10,3
13 Random Excursions Variant (x=-3) 13,4
14 Linear Complexity (M = 1024) 7,2
15a Serial (m = 16) 7
15b Serial (m = 16) 10

Having looked at the table, we can see that evaluated
chi-square values do not exceed limiting value of
233,72.

Conclusions

The aim of this paper is to demonstrate the
performance of our PRNG based on NLDCS. The
investigation showed that to get pseudo random bits,
additional requirements have to be met. These are:

1. To generate float numbers in interval [0,2; 0,8];

2. To use double precision floating point format for
encoding float numbers to binary format and remove the
highest 16 bits.

The described PRNG construction passed NIST
statistical test suite. It can be used as a good source for
random cryptographic key generation.

References

1. Menezes A., Oorschot van P., Vanstone S. Handbook of
Applied Cryptography // CRC Press. – 1996. – 780 p.

2. A. Čitavičius, A. Jonavičius, S. Japertas. Unpredictable
cryptographic pseudo-random number generator based on
non-linear dynamic chaotic system // Electronics and
Electrical Engineering. – 2007. – No. 7(79). – P. 29–32.

3. National Institute of Standards and Technology. A
statistical test suite for random and pseudorandom number
generators for cryptographic applications // Special
publication 800-22. – Revision 1. – August 2008. – 131 p.

4. R. Ursulean. Reconsidering the Generalized Logistic Map as
a Pseudo Random Bit Generator // Electronics and Electrical
Engineering. – 2004. – No. 7(56). – P. 10–13.

5. Janke W. Pseudo Random Numbers: Generation and Quality
Checks // In Quantum Simulations of Complex Many-Body
Systems: From Theory to Algorithms. – John von Neumann
Institute for Computing. – Jülich. – 2002. – NIC Series. –
Vol. 10. – P. 447–458.

6. Pareschi F., Rovatti R., Setti G. Second-level NIST
Randomness Tests for Improving Test Reliability // IEEE
International Symposium on Circuits and Systems. – New
Orleans, 2007. – P. 1437–1440.

Received 2009 04 09

A. Čitavičius, A. Jonavičius. Analysis of Unpredictable Cryptographic Pseudo-random Number Generator based on Non-linear
Dynamic Chaotic System // Electronics and Electrical Engineering. – Kaunas: Technologija, 2009. – No. 7(95). – P. 25–28.

Most of pseudo-random number generators are unsuitable for cryptographic applications despite their statistical and correlation
characteristics due to their backward and forward predictability. In this paper we presented an analysis of unpredictable cryptographic
pseudo-random number generator based on non-linear dynamic chaotic system. We showed that we can get 48 bits from one float point
and these bits generally passed NIST statistical test suite, therefore, we recommend to use this generator for cryptographic keys
generation. Ill. 6, bibl. 6 (in English; summaries in English, Russian and Lithuanian).

А. Читавичюс, A. Йонавичюс. Анализ непредсказуемого криптографического генератора псевдослучайных чисел,
основанного на нелинейной динамической хаотической системе // Электроника и электротехника. – Каунас:
Технология, 2009. – № 7(95). – С. 25–28.

Большенство псевдослучайных генераторов чисел являются неподходящими для криптографии, несмотря на их
статистические и корреляционные особенности из-за их прямой и возвратной предсказуемости. Представлен анализ генератора
псевдослучайных чисел, основанного на нелинейной динамической хаотической системе. Было показано, как с одного
реального числа можно получить 48 бит. Этот генератор прошёл NIST статистические тесты, поэтому рекомендуется
использовать его для генерации криптографических ключей. Ил 6, библ 6 на английском языке; рефераты на английском,
русском и литовском яз.).

A. Čitavičius, A. Jonavičius. Nenuspėjamas kriptografinis pseudoatsitiktinių skaičių generatorius netiesinės dinaminės chaotinės
sistemos pagrindu // Elektronika ir elektrotechnika. – Kaunas: Technologija, 2009. – Nr. 7(95). – P. 25–28.

Dėl galimo tiesioginio ir atgalinio sekos narių numatymo dauguma pseudoatsitiktinių skaičių generatorių nėra tinkami naudoti
kriptografijoje, nepaisant jų statistinių ir koreliacinių savybių. Atlikta pasiūlyto saugaus atsitiktinių skaičių generatoriaus, sukurto
dinaminės chaotinės sistemos pagrindu, analizė. Parodyta, kaip iš generuojamo vieno realaus skaičiaus galima gauti 48 bitus, kurie
apskritai imant tenkina NIST statistinius testus. Siūloma šį generatorių naudoti kriptografiniams raktams generuoti. Il. 6, bibl. 6 (anglų
kalba; santraukos anglų, rusų ir lietuvių k.).

