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Introduction

Cellular neural networks were introduced in 1988 [1]
as an alternative to the usual artificial neural networks. The
cellular neural networks emerge were stimulated by the
huge need of the parallel processes in the automated
information processing systems and especialy in the field
of image processing systems. The development of such
artificial networks is stimulated also by the fact that
biological well working sensory system is cell formed, i.e.
out of the elements carrying on their elementary functions.
The emerge of the cellular neural networks has widen the
bottleneck in the information processing path, although the
persisting problem is how to make up the image analysis
system suitable for many cases, yet reliable, fast and
trainable by given classified images.

The cellular neural networks may be realized by
analogue and digital circuits. There are applied analogue
and digital signal processing approaches, both integrated
together, in this work. Such neural networks are called
pulsed cellular neural networks throughout the various
papers.

There are known some digital realization methods
described in the literature. For example, the robot avoiding
obstacles by utilizing visua information has been
manufactured [2]. The membrane potential of the neuron is
modelled by common digital counters consisting of flip-
flops. The reaction pulse springs up when the contents of
the counter is above certain level.

However, many of the image processing tasks requires
huge amount of paralel processes to achieve high
processing speed [3]. This leads to huge amount of parallel
connected processing elements. In this case, the analogue
devices are more superior due to the fact, that they occupy
less space in the integrated circuits. Such analogue devices
are designed and the created system has been applied to
segment the images by adapting the weights of the artificial
neurons [4].

The information streams model of the pulsed neural
cells is under scope in this work to research it's working
characteristics, to find possible essential operation
peculiarities in the physica systems, to work-out data

input-output visualization subsystem and test the model of
the system while processing the images.
Theoretical Model

In the most general case, any linear layer of artificial
neural network in its base serves as multiplication and
addition operator:

N
g(X,W)=_;0Wi X , @)

where W, - weight, showing how much input signal x; has
the influence into the output, N - quantity of inputs. X
and W are the input signals vector and their weights
vectors, respectively. Sum (1) will express non-linear space
when it is passed in as the non-linear function argument:

y(X, W)= f(g(X,W)), )

where f - non-linear function in the general case.
Operation (2) mostly is base operation in various
image processing procedures where the convolution
operation is applied extensively [3]. Discrete one
dimensional convolution can be written as follows:

N+ j
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It is easy to notice by comparing (1) and (3)
expressions that artificial neural network may perform the
convolution of vectors X and W . Such artificial neural
network performing convolution is shown in the Fig. 1.

Input and output signals of the artificiad neura
network are expressed as pulses in this paper. The value of
the i-th input signal is defined as the sequence of pulses
with identical amplitude and width. The physical realization
of the expression (3) may be easier understood by
portraying the model of the electronic single outputted
device which calculates the convolution. For such reasons
the pulsed neural network cell is applied which has two
positive inputs, as shown in Fig. 2. The cell converts the
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sequences of pulses into analogue signal, processes it and
springs the output pulsed signal. The artificial neuron
accumulates the tension depending on the count of
incoming pulses. The tension in the artificial neuron in the
general case can be expressed as.

V(t)= Aohlry,t), (4)

where Ay — amplitude of the pulse, 74 — integration factor,
t —time, h —impulse response function.
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Fig. 1. Artificial neural network as convolving device

In such case, the artificial neuron will accumulate tension
and the signal projecting that tension will rise until
saturation and afterwards the tension will not reflect the
tension supplied by input signals.
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Fig. 2. The pulsed artificial neuron: 1 — adder, 2, 4 — integrators,
3 — comparator and pulse formation unit

The accumulated tension should be discharged to
avoid such information loss due to saturation effect. Such
processis expressed introducing yet more one time constant
75 predetermining the discharge speed of the tension in the
artificial neuron. Let the charge pulse appears at the
moment ty and ends at the moment t; (Tpy =t; —tg IS

the charging pulse width) then the expression (1) evolves
into:

V(1) = Ao(h(zy,t) - hizz,1)), (5)
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where 7, <<7,. This way, having the constant count of

charging pulses the tension is around its mean value which
reflects the tension supplied by incoming pul ses.

The intra-cellular tension reflects the influence of all
inputs. If the input signal is multiplied by the corresponding
weight w; , expressing the magnitude of the input influence,

then the expression (5) evolves into following:

06| S sttt 0

After the charge pulse, the cell's output signal is
formed by such rule:

y :{AO(TPH )if g(X)>Vip '

0, ese 0

where Ag(Tpy ) — output pulse having Tpy width and
amplitude A,.
The inner tension g(X) is compared to a threshold

which is the sum of the feedback signal and its weight
products:

Vir (t)= (Wfq yi fh(rs,t—t2)-hizs,t-t3)),

where wy, —feedback weight, t, — the appearance time of

©)

the output pulse, t; —the end of the output pulse, 73, 74 —
charge and discharge time constants. Note, that
(tq >>13)>> (r >>17).

Concluding the artificial neural cell's work cycle, it
may be divided into such steps:

a) the quantized pulses asinput signals are applied;

b) g; signal is obtained by summing the weighted
pulses in the synapses;

) the value of threshold Vit is obtained from the
output signal coming to the feedback loop;

d) the output signal is formed when signal g; is

greater than Vit signal;
€) threshold value V;t isincreased by the output pulse
which isin the feedback loop.

Experimental Results

The tension accumulation function in the pulsed
artificial neural networks may be implemented applying the
capacitors in the integrated circuits. The capacitance can be
charged or discharged by two ideal sources. By connecting
the current source the voltage on the capacitance is
changing near linear function and by connecting the voltage
source the capacitance's voltage is changing near
exponential function. This way the response function h(z,t)

will be linear and in the other case — exponential in the
expressions (6) and (8). The experimental setup was
assembled to test the performance peculiarities of such
artificial pulsed neural network. The experimental setup
schematics are presented in Fig. 3.
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Fig. 3. The experimenta setup of artificial neural system

Table 1. Charging-discharging loop's parameters

Common characteristics

Resol ution/Dynamic Range [pul ses] 32
Minimal Pause [relative pulses] 9
Exponential response char acteristic

Tension magnifier 1
Tension decrease time constant [relative | 0.7
pulses]

Threshold magnifier adaptive
Threshold decrease time constant [relative | 50
pulses]

Linear response characteristic

Tension magnifier 0.5/input
Tension decrease 0.0085
Threshold increase 0.18
Threshold decrease 0.0085

The pulse sequencer converts the non-dimensional
number into the sequence of pulses. The maximal possible
quantity of pulses will determine the dynamic range of the
neural system. The pulses are placed applying the equal
probability randomization. Let's assume the pulse width is
relative and equal to one (Tpy =1).The pulse ratio is not

less than 0.5. The examples of such pulse sequences for
input signals x; and X, corresponding the numbers n; and

n, are presented in Fig. 4aand 4b. Table 1 also presents the

charging-discharging time constants for the artificial neural
network for different response characteristics. All the
parameters having the time dimension are expressed as
relative pulse widths.

The supplied pulsed signals (Fig. 4a and Fig. 4b) are
weighted by the corresponding weights wy =w, =0.5 and
summed to find the average. This way the inner-cellular
tension is obtained and then it is compared to adaptive
threshold. Fig. 4c presents the adaptive threshold and inner-
cellular tension when the time scale is magnified. The pulse
is sprung out at the output when the inner-cellular tension is
higher than threshold. The latter signal is presented in Fig.
4d.
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Fig. 4. The input and inner state signals of the artificial neural
network: a) input signal representing value 16, b) input signal
representing 18 value, ¢) intra-cellular tension and threshold, d)
output signal
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Fig. 5. The quantitative change of the output value while shifting
analysis window
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The output pulse stream is analyzed by pulse sequence
analyzer which counts the pulses during the time window
determined by the product of the shortest pause between
pulses and system dynamic range. For example, let's
assume Tpy =1 the pulse width, the minimal time between

two pulses is 9 and dynamic range is 32, then the time
window for analysis will be 320 sections on the time scale.



The beginning of the next analysis window is shifted right
by one shortest period between pulses. Fig. 5 presents the
example of how the output value is changing while moving
analysis window.

The work of the pulsed artificia neural network is
tested by giving into the inputs the pulse sequences which
corresponding values differ by 2. In such case, it is easy to
check whether the artificial neuron calculates the average
and at the same time, the error transfer function depending
on input value is obtained. Such steps were repeated 31
times to obtain sufficient information for mean and
deviation of the error & . The error functions of such simple
network for the linear and exponential responses h(z,t) are

presented in Fig. 6a and 6b.
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Fig. 6. The error introduced by artificial neural network when
responseis: a— linear, b — exponential

The swinging character of the error function is shaped
by the introduced negative feedback. It controls the
tendency to pass the pulse count as constant as possible. It
is clear, that when there are no pulses there should be no
output pulses and the error function should be somewhere
around zero. The same it could be stated for the strong
signal because the artificial neuron cannot give more pulses

in its nature. The error in the centre of the dynamic rangeis
also around zero of the optimal shooting response. The
greatest error is achieved where neuron tends to increase (in
the end of the first quarter) or to decrease (in the end of the
third quarter) the quantity of shooting pulses to keep the
optimal datarate.

Furthermore, the error characteristics were analyzed to
find the quantitative value of systematic error. By trying
different level of polynomial, it appeared enough to
approximate the error average of the artificial neura
network by the third order polynomial sum:

e(N)=ag +ayN+a,N? +agN3, (11)
where N — number or value corresponding input number.

Fig. 7 presents the dependency of bias component ag
of error of the pulsed neura network when changing the
discharge time constant 7, (tau,) for exponential and

decrement (discharge speed) for linear response
characteristic. Such plots made easy to find the equal
conditions for the quantitative comparison of the
performance of such networks. When the experimental
setup was run for 30 times with the values giving minimal
error, the average and standard deviation could be estimated
for each factor in the (11) equation. The obtained values are
presented in the Table 2. It may be concluded that the
pulsed neural network with the exponential response
characteristic is performing better than the linear one,
especialy in the means of bias component's ag average
and deviation. On the other hand, mean values mostly vote
for exponentia and deviation values for linear response.
Furthermore, it can be concluded that ag, will give
systemically maximum 2% error which is acceptable for
speedy vision applications.
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Fig. 7. Error of pulsed neuron depending on: &) threshold decrease
time constant for exponential response, b) threshold decrease for
linear response
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Table 2. The components of the error polynomial of the pulsed
artificial network optimized for minimal a,

[ & [ & | & | &
Average
Linear 9,17e-3 1.445 -1.38e-1 3.0e-3
Exponential -3.31e-3 1,269 -1.16e-1 2.4e-3
Standard Deviation
Linear 7,18e-2 2.04e-2 1.74e-3 45e-5
Exponential 5.80e-2 2.36e-2 1.99e-3 | 4.5e5

-
.],l
:
5

Fig. 8. Images processed by pulsed neural network: a) initial
image, b) unidirectional gradient 2x2 image, c) localy integrated
image by 4x4 size operator

The pulsed neurons were practically applied on
images to test the validity of application of such
approaches. Fig. 8a presents the source image applied to the
similar setup and 8b presents source image processed by
unidirectional gradient extraction operator of size 2 by 2
elements. In this case, the pulsed neural network weights
conform to unidirectional horizontal gradient and have
values:
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Fig. 8c presents the resulting image after passing the
source image through the pulsed neural network performing
4x4 elements integration by giving the weights:

e
He M

Unidirectional gradient extraction operator (12) makes
distinct the vertical parts of the image. In this case, the
image is brighter where the lightness of the image goes
from the light to dark and vice versa, the image is darker
where the lightness of the image goes from dark to light
(Fig. 8b). Integration operator, on the contrary to gradient
operator, blurs the image. In this case, 8c shows the small
details blurred. So, such pulsed artificial neural network
may be successfully applied to the widespread convolution
in the image processing applications.

(12)

W (13)

Conclusions and Results

The integral error for artificial pulsed neural network
is quantitatively less for exponential transfer function than
linear in this experiment. But for speed optimized vision
systems both approaches are valid and will give maximally
2% error.

The shape of error function of such artificial pulsed
neural network is determined by the negative feedback
which practically tends to keep the output pulse rate at
some optimal value.

The output value of the artificial pulsed neuron settles
in some multiples of the minimum pause between pulses, so
the output result delay is some periods.

The performance of the pulsed neura network was
successfully tested on images convoluting between input
signal and simple operators. Such artificial pulsed neural
network is suitable for image processing applications.
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V. Paukstaitis, A. Dosinas. Pulsed Neural Networks for 1mage Processing // Electronics and Electrical Engineering. — Kaunas:
Technologija, 2009. — No. 7(95). — P. 15-20.

Ehe information streams model of the artificial pulsed neura network to reserch the performance peculiarities in the up-coming
physical systems in the vision applications st 3xystyreys. The information is transmitted between layers of neurons, performing the
convolution, by sequences consisting of pulses of the identical amplitude and width. The simplified theoretical model is tested by the
system capable to change the inner and outer performance parameters of the pulsed neuron. The presented model of pulsed network
tends to output optimal count of pulses due to negative feedback, which introduces the swinging character of the error function. The
paper also presents the quantitative evaluation obtained near minimal error when the pulsed neuron has the response linear and
exponentia characteristics. The work of both neurons are compared by the extracted factors of the polynomial sum. Therefore, the
images were convolved with artificial neural network consisting of the optimized pulse neurons. I11. 8, bibl. 4 (in English; summariesin
English, Russian and Lithuanian).

B. INaykmraiitue, A. Jlocunac. MmnyibcHble HelpoHHbIE ceTH s 00pa0oTKH H300pakeHMil // DJIeKTPOHHKA H
anekTporexnuka. — Kaynac: TexHosorus, 2009. — Ne 7(95). — C. 15-20.

IpencraBnena Monens WHGOPMAINOHHEIX MOTOKOB B sSYEHKAaX MMITYIbCHBIX MCKYCCTBEHHBIX HEHPOHOB, IpeJHA3HAYCHHBIX I
00paboTKN HM300pakeHUH, HCCIEAYIOTCI OCOOCHHOCTH pabOThl HEHPOHHBIX CETe TaKoro THUMA B BO3MOXKHBIX (PU3MYECKHUX
peammzanusax. Wudopmammsa Mexnay clnos MM HMMIYJIbCHONW HEHpPOHHOH CeTH, peanu3ylolled Onepaunuio CBEpTKH, Iepenaércs
MOCIIEJOBATENILHOCTSIMUA UMITYJIbCOB OJMHAKOBON aMIUIUTYIbl U OJMHAKOBOM MJIMTEIBHOCTH. YIIPOILIEHHAs TEOPETUUECKash MOJENb
TAaKOW CEeTH MpPOBEPSeTCS CUCTEMOH, CHOCOOHOI OmpenenuTh BHYTPEHHHE M BHEIIHHE MapaMeTpbl paboThl UMITYJIbCHOM HEWpOHHOM
s4eliki. BHyTpeHHas oTpunarenbHas oOpaTHas CBs3b, Oylarofaps KOTOpPOi HeHWpoHHas sdeiika (OpMHpYET ONTHMAaJIbHOE YHCIO
HMITYJIbCOB Ha BBIXOJIE, BHOCHT OMIMOKY KOJEOJIomerocst xapakrepa. B pabore Taxke MPUBOAATCS MONydYEHHBIE YHUCICHHBIE OLCHKU
JUISL UMITYJIGCHBIX HEHPOHHBIX SUeeK C JIMHEWHOH M C SKCIOHEHTHOH MNepeNaTOYHON XapaKTePUCTUKOH, MOJIYyYCHHBIE B YCIOBHSIX
MHHUMANbHOHM ommuOku. PaboTa 00enx THIOB HEHPOHHBIX SYEeK OLEHUBAETCS KO3()(GHUIMEHTAMH ITOJHMHOMOB, allpPOKCHMHUPYIOMINX
oummm6Oku. VMckyccTBeHHas HEHpOHHAsl CeTh, COCTABICHHAs U3 TAKMX ONTUMU3UPOBAHHBIX UMITYJIbCHBIX HEHPOHHBIX SYEEK, UCIIBITAHA
JUTsL BBIITOJIHEHHUST OTIepaliii CBEpTKH NpH 00paboTke peanbHbIX u300paxeHuil. M. 8, 6ubn. 4 (Ha aHriuiickoM s3bike; pedeparsl Ha
QHTJIMHCKOM, PYCCKOM M JINTOBCKOM 513.).

V. Paukstaitis, A. Dosinas. Vaizdy apdorojimas impulsiniais neuroniniais tinklais // Elektronika ir elektrotechnika. — Kaunas:
Technologija, 2009. — Nr. 7(95). — P. 15-20.

Aprasomas dirbtinio impulsinio neurono lasteliy, taitkomy vaizdams apdoroti, informacinio srauto modelis; nagringjamos tokio tipo
neuroniniy tinkly darbo ypatybés galimose fizinése realizacijose. Informacija tarp dirbtinio impulsinio neuroninio tinklo sluoksniy,
atliekanciy sasikos operacija, perduodama sekomis, sudarytomis is vienodos amplitudés ir vienodos trukmeés impulsy. Supaprastintas
tokio tinklo teorinis modelis tikrinamas sistema, gebancia nustatyti impulsinio neurono isorinius ir vidinius darbo parametrus. Vidinis
svyruojamo pobtdzio klaida. Pristatomi impulsinio neurono su tiesine bei eksponentine peréjimo charakteristikomis darbo kiekybiniai
jverciai, gauti minimalios klaidos salygomis. Abigjy tipy neurony darbas jvertinamas palyginant klaidy, aproksimuoty polinomais,
koeficientus. Dirbtinis neuroninis tinklas, sudarytas i§ tokiy optimizuoty neurony, ishandytas atliekant sastikos operacijas vaizdams
apdoroti. 11. 8, bibl. 4 (angly kalba; santraukos angly, rusu ir lietuviy k.).
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