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Introduction      

 
Industrial robots are commonly controlled in joint 

space to perform position control [1]. In practice, for 
tracking a trajectory in task space, an industrial robot 
follow a desired trajectory in joint space which is already 
recorded in a learning process called the "teach and play 
back" technique. Actually, the transformation from task 
space to joint space is realized perfectly by this technique 
while a computed transformation such as inverse 
kinematics may involve model uncertainties. This 
technique works well if the transformation to be 
repeatable. Thus, it is not surprising if a joint space control 
can provide a desired tracking performance in task space 
without feedbacks from the end-effector position since an 
industrial robot is constructed in a high quality with a good 
repeatability, precision and resolution to overcome 
uncertainties. 

In joint space control, feedbacks from joint space are 
given to control system for tracking a desired trajectory. 
This control system does not detect the position error of 
end-effector in work space. Even if a precise tracking of 
joint positions is achieved, a desired tracking in task space 
is not provided by the use of imperfect transformation of 
control space. Thus, due to detecting tracking error of the 
end-effector, task-space tracking control of a normal-cost 
robot is superior to joint space control. It means that we 
can expend less cost to achieve a desired performance by a 
task-space control of a normal-cost robot in replace of 
joint-space control an expensive robot. However, obtaining 
feedbacks from task-space is not as convenient as joint-
space. The joint positions are measured suitably by optical 
encoders while end-effector position may be detected using 
vision systems [2-3].  

There is a challenge in robot control to overcome 
uncertainties, nonlinearities and couplings from different 
aspects in the field of robust control as surveyed in [4-7]. 
The robust control provides stability under uncertainties 
with a trade off between tracking performance and bounds 
of uncertainties. This control approach was extensively 

presented in joint space while controlling a robot in task 
space is still a control problem. Recently, several 
regulating controllers were proposed for task space to 
overcome parametric uncertainties [8]. The approximate 
Jacobian controllers were proposed with task-space 
damping for the set-point control of robot with uncertain 
kinematics and dynamics [9]. And, an adaptive Jacobian 
controller was proposed for trajectory tracking control of 
robot manipulators in task-space under parametric 
uncertainties [10]. The controller does not require exact 
knowledge of Jacobian matrix and dynamic parameters. 
Moreover, an adaptive task-space tracking control method 
was proposed using visual task-space information to 
overcome the parametric uncertainties in model including 
actuators [3]. Thus, adaptive control of robot in task-space 
is successful to overcome parametric uncertainties, 
however unstructured uncertainties are remained to 
consider.  

The robust control approaches can present the uniform 
bounded error convergence in the case of wide range of 
uncertainties. This is a result of uniform ultimate 
boundedness (u.u.b.) of the tracking error using the 
Lyapunov based theory of guaranteed stability of uncertain 
system [11-12]. The u.u.b. of the tracking error will not 
result in a perfect tracking performance such as asymptotic 
stability.  

In this paper, a new nonlinear robust control is 
proposed for trajectory tracking of robot with uncertain 
kinematics and dynamics. Simulation results are presented 
to illustrate the performance of the proposed controller. 

                
Problem Formulation in joint space 

                
The dynamics of the robot with  degree of freedom 

can be expressed as [6] 
n
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  nRtq where denotes the joint angles of the manipulator; 
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acceleration, respectively.  is the inertia matrix 

which is symmetric and positive definite, is 

a vector function containing coriolis and centrifugal 

forces,  is a vector function consisting of 

gravitational forces. is a diagonal matrix of 

viscous and dynamic friction coefficients, 
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is 

the vector of unstructured friction effects such as static 

friction terms. T is the vector of any generalized 

input due to disturbances or un-modeled dynamics, 

 is the vector function consisting of applied 

generalized torques. For simplicity of  (1),  can be 

shown as: 
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By substituting Eq (2) into (1), we have: 
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In the presence of uncertainty such as unknown 
parameters, frictions, load variation, disturbances and un-
model dynamics, dynamics of robot manipulator in (3) are 
usually not totally known. All the terms in Eq (3) can be 
reduced into two parts, without loss of any generality:  
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and  denote the unknown parts of  , udF ,  qqH , , 

,  and  respectively. To design  nonlinear 

robust controller, the following assumptions should be 
established. 
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Assumptions 
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where , ,  and 

m

0f 1f
 t are positive constant and 

assumed to be known constants.  qm  and  qc  are 

known, positive definite function of  and   is a known 

positive definite function. For a revolute- joint robot, 

matrix

q g

 qM  is not only positive definite but also its 

dependence on is in the form of the trigonometric 

functions, sine and cosine. This implies that, for revolute-
joint robots,

q

  mm q  ,   cc q    and  are all 

constants. 
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Control input in joint space 

 
By substituting Eq.(4) into (3), We have: 
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We define position error  and velocity 

error 

q)

qqdte )( in joint space. According to Eq.6, we 

propose control law to following form: 
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where is desired joint acceleration, n
dq  R  and are 

positive constant and is new robust control law. (7) is 

substituted into (6) and it can be simplified as: 
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We define following equation: 
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Since all of the joints are revolute and by according to 
assumptions (1)–(5), we have:   
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We can express Eq.(10) to the following form: 

)11( ,)()( tekteA   

where   is positive constant. By defining 
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Closed loop system (12) can be controlled by 
backstepping method, therefore we can select as 

control law until converges to zero [13]. Thus we 

propose as: 
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where  is positive constant. For stability proof, candidate 

Lyapunov function is suggested as:  
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The time derivative of (14) is  
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Substituting (12) and (13) into (15) results in: 
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(16) shows that  V therefore X nverges to 

zero.  

0)( 11 X  , o)(1 t c

  
Closed loop stability proof  
 

For stability proof of closed loop system (12), we 
proposed candedate lyaponov function as: 
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The time derivative of (17) is  
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(12) and (13) are substituted into (18) as: 
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(19) can be simplified as: 
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According to assumptions 1-5, we can express (20) 
as: 
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According to (21), robust control law can be 

suggested as: 
ru
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where   is positive constant. Substituting (22) into (21) 

results in : 
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According to (11), (12), (13) and (23), we have: 
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where   and   are positive constant. According to (22) 
and (24),   and   are coefficient of controller. So we can 

guarantee  by properly selecting these 

coefficients. Thus closed loop system (12) is global 
asymptotic stable by using proper control coefficients. The 
joint space control law follows as: 
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Robust backstepping control in task space     
 
Closed loop system (12) is global asymptotic stable 

using the joint space control law (25), but according to the 
introduction section, precise trajectory tracking of robot 
manipulator cannot be guaranteed using the control law 
(25) in task space. Therefore, we will generalize robust 
backstepping control in joint space to task space in this 
section.       

We know that Robot dynamics in task space follows 
as: 
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In the presence of uncertainties, dynamics of robot 
manipulator in (26) are usually not totally known. All the 
terms in Eq (26) can be reduced into two parts:  

),()()( qAqAqA uk  

),()()()( 1 qJqMqJq k
T

k
A

N

 
),,(),(),( qqNqqNqq uk   

  ,)()()(

),()(),(
1 qqJqJqMqJ

qqHqJqqN

k
T

k
T

k







 

)27( 

 


where , , and  are the 

known parts and and denote the unknown 

parts of  , ,  and H  respectively. 
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According to the previous sections, we can proof that 
system (26) are global asymptotic stable with following 
task space control law: 
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where , , k   and   are positive constants, is 

desired task space acceleration, and are position 

and velocity errors in the task space, respectively. For 
stability proof, we suggest candidate Lyapunov functions 
(14) and (17).    

dX

)(te )(te

 
Modifying the Control Law in task space 

 
Sensing requirements is another important problem 

which should be considered. The control law (28) is 
formed by measuring joint positions , the joint velocities 

 and the end-effector positions 

q

q X and the end-effector 

velocities X . A joint position is commonly measured by an 
optical encoder and a joint velocity may be measured 
directly or by soft derivative of joint position and many 
commercial sensors are available for measurement of X , 
such as vision systems, electromagnetic measurement 
systems, position sensitive detectors or laser tracking 

systems. However, X  is rarely measured in robotic 
applications while vision technique can be used for this 
purpose. Alternatively, vision technique was used to 
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measure the end-effector position X precisely and then 

X
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can be computed. For sake of practical purposes, (28) 
can be modified as  
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where  is an estimation of Jacobian matrix. Control 

law (29) is formed by measuring joint positions q , the joint 

velocities  and the end-effector positions

)(ˆ qJ

q X . Thus 

control law (29) with respect to (28) is more practical. But 
in the presence of imperfect Jacobian matrix, we have 
velocity computation error in (29), Therefore closed loop 
system has uniform ultimate boundedness stablity using 
control law (29). To reduce production cost in control law 
(29), we can compute position errors using velocity errors. 
Thus control law (29) can be modified as:   
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To apply (30), we need to measure joint 
positions and the joint velocities q . Although closed loop 

system has uniform ultimate boundedness stability using 
control law (30), but trajectory tracking error in task space 
is controllable. Because, we have: 

q 

)31( 









 )).(ˆ())()(

(ˆ))()(ˆ()()

),(ˆˆ,)()

,)(ˆˆ,)

1 qJXtet

JXtetetet

teetet

qqJXeXXt dd














 

According to (31), tracking error in task space is 
reduced by increasing of control coefficient  . 

 
 Case Study of Two-Link Elbow Robot Manipulator            

 
In order to verify the performance of proposed control 

schemes, as an illustration, we will apply the above 
presented controllers to a two-link elbow robot 
manipulator shown in figure1. The dynamic of the two-link 
elbow robot manipulator can be described in the following 
differential equation [6] : 
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where  for iq 2,1i  denotes the joint angle,  is the link 

length,  is the link mass,  is the link's moment of 

inertia given in center of mass,  is the distance between 

the center of mass of link and the ith joint,  is dynamic 

friction, is static friction, is disturbance and un-

model dynamic and 
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Fig. 1. Two- Link Elbow Manipulator 
 
 

The Jacobian matrix is in the form of 
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The kinematic equation is given by   
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The link's parameters are estimated by a gain of  
from real values given in Table 1. We set the controller 
with

9.0

1 , 1k  and 20 . Then a circle with a radius 

of 0.5 m centered at (0.95,0.95) is given to control system 
as a desired trajectory. Initial condition is at (1,1).  
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Table 1. Parameters of Two- Link Elbow Robot 

Link L CL M I sF dF dT 

1 1 0.5 15 5 1 1 50 

2 1 500 6 2 1 1 10 

 
Simulation Results 
 

Sim1. the joint space control given in (25) is 
simulated with 20  to track the circle. The performance 

of control system is not satisfactory as shown in Fig.2 
while the norm of tracking error in task space shows a 
maximum value of 10 mm in Fig. 3. 

Sim 2. The task space control given in (28) is 
simulated where the paramiters are the same as before. We 
cannot see any differences between the desired and actual 
trajectories as shown in Fig. 4. the norm of tracking error 
in task space has been converged to zero as shown in Fig. 
5. The control inputs are under the permitted values of 

as shown in Fig. 6. Nm40

Sim 3. The modified control given in (30) is simulated 
where the parameters are the same as before. The norm of 
tracking error in task space shows a maximum value of  
1.5 mm in Fig. 7. We can reduce the maximum norm of 
tracking error by increasing control coefficients  and  in 

the modified control law (30) as shown in Fig. 8. The 
simulation results show norm of errors for given values of 
20, 60 and 100 to  and 40, 75 and 100 to  , respectively.  
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Fig. 2. Tracking a circle by control law (25)  
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Fig. 3. Norm of tracking error in task space 
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Fig. 4. Tracking a circle by control law (28)  
 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.01

0.02

0.03

0.04

0.05

0.06

time(sec)

T
ra

ck
in

g 
E

rr
or

 N
or

m
 in

 T
as

k 
S

pa
ce

 (
m

m
)

 
Fig. 5. Norm of tracking error in task space 
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Fig. 6. Control inputs in task space control 
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Fig. 7. Norm of tracking error in task space  
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method, using backstepping method. It is then proven that the closed loop system has global uniform ultimate boundedness stability. 
Modifications are given to derive a control law which is free of position and velocity of end-effector. The control approach is applied on a two-
links elbow robot manipulator. The performance of proposed control laws are confirmed by simulations. Ill. 8, bibl. 13, tabl. 1 (in English; 
abstracts in English, Russian and Lithuanian). 

 

М. Р. Солтанпур, С. Э. Шафей. Исследование контроля манипулятора робота в заданном пространстве с неопределенными 
кинематикой и динамикой // Электроника и электротехника. – Каунас: Технология, 2009. – № 8(96). – С. 75–80. 

Рассмотрен новый метод контроля слежения манипулятора робота в заданном пространстве. Предложена схема контроля 
заданного пространства, которая учитывает неясности, связанные с динамикой и кинематикой робота. Управляющий механизм создан 
с использованием метода Ляпунова. Доказано, что система замкнутого цикла имеет ограниченную стабильность. Приведены способы 
преобразования в системе контроля, которые обладают независимостью от положения и скорости. Результаты исследований контроля 
внедрены при организации двухмерного управления кулисой манипулятора робота. Ил. 8, библ. 13, табл. 1 (на английском языке; 
рефераты на английском, русском и литовском яз.). 
 

M. R. Soltanpour, S. E. Shafiei. Roboto manipuliatoriaus kontrolės tyrimas pasirinktoje neapibrėžtos kinematikos ir dinamikos erdvėje 
// Elektronika ir elektrotechnika. – Kaunas: Technologija, 2009. – Nr. 8(96). – P. 75–80. 

Apžvelgtas naujas metodas roboto manipuliatoriaus sekimo kontrolei tirti pasirinktoje erdvėje. Pasiūlyta pasirinktos erdvės kontrolės 
schema, kuri įvertina neaiškumus, susijusius su roboto dinamika ir kinematika. Valdiklis yra sukurtas remiantis Liapunovo metodu. Įrodyta, kad 
uždaro ciklo sistema yra riboto stabilumo. Pateikti kontrolės sistemos keitimo būdai, kurie yra nepriklausomi nuo padėties ir greičio veiksnių. 
Kontrolės tyrimo rezultatai panaudoti dvilaipsniam roboto manipuliatoriaus alkūnės valdymui. Il. 8, bibl. 13, lent. 1 (anglų kalba; santraukos 
anglų, rusų ir lietuvių k.). 
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