ELECTRONICS AND ELECTRICAL ENGINEERING

ISSN 1392 - 1215

2009. No. 8(96)

ELEKTRONIKA IR ELEKTROTECHNIKA

AUTOMATION, ROBOTICS

T 125

AUTOMATIZAVIMAS, ROBOTECHNIKA

Modeling and Analysis of Neuro—Genetic Hybrid System on FPGA

M. NirmalaDevi, N. Mohankumar

VLSI Design Research Group, Department of Electronics & Communication Engineering, School of Engineering, Amrita
Vishwa Vidyapeetham, Coimbatore, TamilNadu, India, phone: + 91-422—- 2656422, fax.+91-422—-2656273
e-mails: nirmala_amrita@rediffmail.com, nirmala_amrita@yahoo.co.in, mk.mohankumar@gmail.com

S. Arumugam
Nandha Institutions, Erode, TamilNadu, India,
e-mail: arumugamdote@yahoo.co.in

Introduction

Artificial ~ Neural = Networks (ANNs) are
computational models of a fractional part of biological
nervous system. ANN is computation intensive to suit
complex applications [1] though its structure is simple.
Most of the ANN applications use Feed Forward (FF)
architecture with gradient-based learning like Back
Propagation (BP) algorithm [2] or modified BP algorithm
[3]. As the complexity of the network increases, the search
space appears with more and more local optima and
gradient-based learning may not always lead to global
minima. Moreover BP needs complex operation, which
restricts the search coverage. To improve the global
convergence capability, an Evolutionary Algorithm (EA)
[4] can be used. It refers to a special class namely;
Evolutionary Artificial Neural Networks (EANN’s) in
which evolution is another fundamental form of adaptation
in addition to learning [5]. EANN can be exploited to
design the architecture, learn weight, adapt the learning
rule and extract the rule from ANN [6]. EA was broadly
classified as Evolutionary Strategies (ES), Evolutionary
Programming (EP) and Genetic Algorithms (GA), though
many other types have emerged in the recent past [7]. The
work presented here uses GA to simultaneously evolve the
structure and weight of ANN. Capability of GA in the
exploitation of information guides the direction of search
towards feasible region and hence it converges at global
optima.

Although the software implementation exactly
replicates the given algorithm, relatively inexpensive
massive parallelism is exhibited when ANN is realized in
hardware using Very Large Scale Integration (VLSI). A
digital implementation of Genetic Algorithm based Neural
Network (GANN), to solve Parity Function and Character
Recognition problem is explained here. To solve N-bit
parity functions, the Feed Forward Neural Network
(FFNN) needs N neurons in the hidden layer [8]. Stork and
Allen [9] reduced it to two hidden units with diode-like

69

Activation Functions (AF). Few others [10, 11] had tried to
solve the function without imposing any constraint on AF.
On the other hand, genetically evolved Neural Network
(NN) proposed in this paper, solves the N-bit parity
function with N/2 neurons in the hidden layer. The second
application of GANN realizing Character Recognition,
exhibits improved performance in terms of faster
convergence with acceptable error. Thus the GANN to
solve benchmark problems of 8-bit Parity and Character
Recognition is proved to consume lesser area with
increased speed and reduced error. By altering the
topology and links, the designed Neuro—Genetic Hybrid
System can solve any function with binary inputs. Main
objective of the research is to implement the evolved
neural network in VLSI hardware exhibiting the following
characteristics;
- Simplicity and regularity of the structure with
minimal interconnections
- Expandability and design scalability to combine
more modules together
- Reduction in silicon area by replacing multiplier
with comparator in the hidden neuron
- Absence of learning unit due to the genetic
evolution of structure and weight, minimizing the
hardware further
- Solving the parity function with reduced hidden
layer neurons and recognition of character in
lesser number of generations
The review of GANN, algorithmic development,
architecture design and observed results are presented in
the following sections. Simulated results of GANN ensure
the successful implementation of neurohardware.

Review of GANN
Genetic evolution of NN may broadly be

classified as non—invasive and invasive technique. Non—
invasive method combines GA and gradient learning,

where the former evolves the structure and the latter adapts
the weights. Since it involves gradient method, proper
initialization and network implementation is needed to
overcome the local minima problem [12]. On the other
hand, invasive method uses GA for both weight and
topology evolution of ANN. A purely non-invasive
approach with a constructive algorithm is demonstrated in
[13] to evolve Cooperative NN Ensembles (CNNE), using
incremental learning. This reduces redundancy and
maintains diversity to offer a better solution. Smalz and
Conrad [14] proposed a method to assign fitness to
individual neurons of ANN, rather than the whole network.
Odri, S. V., Petrovacki, D. P. & Krstonosic, G. A [15]
developed a non—population based learning algorithm,
which could alter the architecture of ANN.

McDonnell, J. R. & Waagen, D. [16] tried invasive
approach to evolve the interconnectivity with weight
values of ANN, to solve binary mapping and 3-bit parity
problem. Improved GA for tuning the structure and
parameters of an ANN is explained in [17]. Generation of
three offsprings using different mutation operation leads to
the improvement. Structural and weight learning by
mutation is employed in GNARL algorithm to construct
Recurrent NN [18]. Based on GNARL algorithm, a
Mutation—based Genetic NN (MGNN) is implemented in
[7]- The invasive method of using GA for simultaneous
weight and topology evolution is adopted here. The
hardware friendly hybrid system is implemented in VLSI
and its merits are discussed with results.

Algorithmic development of GANN

The factors influencing GANN evolution are
encoding scheme, genetic operators, fitness function and
stopping criteria. Presented work follows binary encoding
scheme to simplify the digital hardware implementation.
The genetic operators namely; two—point crossover and
uniform mutation with probability of pc and pm of 0.8 and
0.01 respectively are applied. The fitness function of
GANN is chosen to be minimization of mean squared
error. Convergence of the network is ensured and
computation is stopped when the fitness variation in
consecutive iteration is insignificant.

Primarily in GA, a set of initial encoded schedules
known as chromosomes is randomly created. Each
schedule is valuated for "fitness". Then, processes based on
natural selection, crossover, and mutation are repeatedly
applied on a population of binary strings which represent
potential solutions. Over time, the number of above-
average individuals increases and better—fit individuals are
created, until a good solution to the problem at hand is
found [19].

Pseudo code of GANN
The procedure followed in the algorithm is explained

with example
1. Initialize the random population (weights and bias

of network);

2. Generate input and target vectors to suit the
application;

3. Assign chromosomes from the population to the

network of initial topology;

70

Simulate the network;
Evaluate the fitness function or Mean Square
Error (MSE);
Increment the number of hidden neurons and
repeat the process, until a best fit
population is obtained;
Do two point crossover on the population to
exchange information between parents:

For example, if pl and p2 are the parents

pr=[11111111], p,=[00000000];

and the crossover points are 3 and 6 then

Child =[11100011];
Get the best population, choose parent and mutate
to gain the lost material:

For example, let the parent be ~ P: 00000000

After uniform mutation Child: 00010001;
Stop if the condition is satisfied and plot the
required results.

The algorithm is executed with an initial population of

chromosomes of length 41 and 50 for the 8-bit Parity
Function and Character Recognition problem respectively.

9.

Application Examples

Eight-bit Parity Functions. To verify the
performance of the evolved neurohardware, eight—bit
parity problem is chosen. Any change in input alters the
output and hence the parity problems become harder to
solve. It is one of the benchmark problems due to its
simple definition but great complexity [20]. Feedforward
networks with one hidden layer require eight neurons in
the hidden layer that is reduced to four, when genetically
evolved. Hence FFNN with N/2 neurons in hidden layer is
implemented in this paper and the performance is
validated. Design of four hidden neurons to realize three—
bit parity is now utilized to solve eight-bit parity function
as shown in Fig. 1.

Fig. 1. Architecture to solve 8-bit parity function: 1~ 8 — Input
Layer Neurons; H1~H4 — Hidden Layer Neurons; Ol — Output
Layer Neuron

Topology evolution and network convergence for
varying number of hidden layer neurons of 8-bit parity
function is presented in Table 1.

TCLX Character Recognition. Character
recognition is a trivial task for humans, but for computers
it is extremely difficult. The main reason for this is, the
many sources of variability. Characters represented by 7 x
5 matrix was realized using pulse—coupled neurons [21].
To reduce complexity, a 3 x 3 array of pixels is chosen

[22] to represent the characters T, C, L and X in nine bits
as shown in Fig. 2. A black pixel and white pixel denotes
one and zero, respectively.

Table 1. Evolution of 8-bit parity function

Network Fitness value Generations

Topology
831 0.256 45

8—4—1(best

network) 025 >0
851 0.265 63
861 0.256 67
8-7-1 0.25 55
8-8-1 0.25 70

1 11 1|1 |11]0]0j[1]0]1
0110 1|]0]0j1]0]0
0j1]0 11)1§1]1]1 1011

=]
o
(=]

Fig. 2. A 3 x 3 array of characters — TCLX

The four combinations of two output neurons are
assigned to denote the four characters, as shown in Table
2.

Topology evolution of Character Recognition
converges to 9-4-2 with least possible error, as shown in
Fig. 3 and Table 3 respectively.

Table 2. Binary assignment of TCLX

Binary representation Output
T 111010010 00
C 111100111 01
L 100100111 10
X 101010101 11

Fig. 3. Architecture 9—4-2 of character recognition

Network with optimized number of hidden layer
neurons converges fast within 55 generations at an
acceptable error. Individual modules of the realized
hardware are explained.

Table 3. Evolution of Character Recognition

Network Topology Fitness value Generations
9-3-2 0.005077 50

9-4-2(best network) 0.004432 55
9-5-2 0.007234 71
9-6-2 0.02604 60
9-7-2 0.072332 67
9-8-2 0.053875 63

71

Architectural Design

Algorithmic flowcharts of computational models
namely; Multiplier and Adder are presented in Fig. 4 and
Fig. 5 respectively. A simple Comparator is also designed.
These modules are combined together to realize hidden
layer neuron, output layer neuron and then the complete
network. Optimized weights are converted to the
equivalent 32-bit single—precision IEEE 754 format, to
make it compatible. It has three components namely sign
(s), exponent (e) and mantissa (m). While realizing the
network in hardware the hidden neuron structure is defined
and replicated when required. Design of hidden neuron
differs from output neuron.

Computation Modules of Neurons

Multiplier Module. Multiplication is executed as
follows. Extract the sign(S), exponent (e) and mantissa (M)
of multiplier and multiplicand. Add the exponents and
store the result along with the carry bit. XOR the sign bits
and multiply these two 23-bit mantissa. Adjust the
exponent depends on the higher order bit of the multiplied
result. Assign the sign bit for the result based on the two
operands and normalize the resulting mantissa. Place the
resulting sign, exponent and mantissa into 32—bit format

Add e, xor sign
& Multiply m,

b

Adjust e & m.
Assign s

'

Normalize m

OQutput 32-bit
data

Fig. 4. Flowchart of multiplier

AdderModule. Extract the sign, exponent and
mantissa of two operands. Compare the exponent and
mantissa to check the absolute value and align the decimal
points for addition or subtraction.

Extract 5. &, m|

Compare e, align
decimal point

v

Compare s. add

Fig. 5. Flowchart of adder

or sub & assign

v

Normalize m .
Adjust e

Output 32-bit
data

Compare the sign bit and add if equal; else subtract
the numbers to get final result. Assign the sign, based on
the magnitude. Normalize the resultant mantissa and adjust
the exponent of the result. By interconnecting the
individual modules, the network is realized. Though the
explanation below refers to Character Recognition, the
hidden layer and output layer neurons are designed to solve
both the problems.

TCLX — Character Recognition

The requirements of ANN such as parallelism and
performance are related to the silicon area consumed to
realize the network. Different types of parallelism are
mentioned like Layer parallelism, Neuron parallelism and
Synapse parallelism [23]. Neuron parallelism that requires
one multiplier per neuron is realized in the architecture
presented here. Hence the neurons of same layer computes
in parallel and computation between layers are executed
sequentially. Character Recognition topology is already
shown in Fig. 3.

Il 0

1| OH1

C1

Cc2

A2

0 0

19

C9

1 W9

Fig. 6. Hidden layer neuron: Il ~ I9 — inputs; W1 ~ W9 —
weights, C1 ~ C9 — comparators, A — Adder; OH1 — output

Hidden Layer Neuron for Character Recognition:
The output of the hidden layer neuron is the multiplied
sum of input and weight. Being a binary input, it need not
be multiplied by weight. A module to check whether the
input is zero or one (i.e.) a comparator will serve the
purpose. Each hidden layer neuron comprises nine
comparators and eight adders to solve character
recognition problem as shown in Fig 6. Hidden layer
neuron accepts binary input and the comparator will either
pass 0 or the corresponding weight to the adder as a result
of input and weight multiplication. For example, if the 9—
bit input is 000011111 then the output of the nine
comparators from top to bottom would be 0, 0, 0, 0, W5 ~
W,. Comparators are used instead of multipliers to
simplify the architecture, which reduces the area
significantly and improves the speed. Output of
comparators is added and the hidden neuron output OH; is
passed on to the next layer for further computations.
Multipliers are used only in output layer neuron of the
proposed design.

Output Layer Neuron for Character Recognition:
Each neuron in the output layer utilizes four multipliers
and three adders as shown in Fig. 7.The weights are
multiplied with the hidden neuron outputs and added to
yield the final output. Proper threshold is set in the output
adder, to decide the discrete binary output. Multiplier and

72

Adder modules are explained already with flowchart.
Results of simulation

A Neuro—genetic hybrid system is implemented in
hardware to solve parity function and character recognition
problems. Results after simulation exhibit satisfactory

performance.
OH1
—>

Mwo11

M2
fWozl

O
lI
N

Y1

o
T
w

M3

Mo31

|

o]
I
N

M4

|

*Wo4l
Fig. 7. Output layer neuron: OH1 ~ OH4 — outputs from hidden
layer neuron; Wol ~ Wo4 — weights; Al ~ A3 — Adders; M1 ~
M4 — Multipliers & Y1 — final output

Eight-bit Parity Function

Evolved weight set of input-hidden layer and
hidden—output layer neurons for parity function is shown
in Table 4 and Table 5 respectively. The internal
computation modules are ensured for proper functionality
and interconnected together to realize the application.

The top signal ‘Reset’ assigns weights, when it is
high and the network produces output when reset is low. A
clock ‘clk’ of 100 ns is applied, to trigger the network on
positive edge.

Table 4. Weight set of input—hidden layer for parity function

Input &

Hidden H1 H2 H3 H4

Neurons
1 0.8357 1.236 0.9488 1.2441
2 0.8896 1.2732 0.3288 0.6875
3 0.5753 0.705 2.0304 -0.2142
4 0.691 0.8228 1.3995 0.3744
5 0.7944 1.4901 0.0055 —0.0421
6 0.8678 0.9432 0.8898 0.5914
7 0.8965 0.4306 0.3753 —0.4368
8 0.3099 0.6362 0.2716 —0.048

Table 5. Output layer weight and bias of parity function

Hidden layer Output layer Bias
weights
1 0.880 1.3336
2 -0.178 -0.2937
3 -0.2722 1.7109
4 0.0429 0.0551
Output layer - 0.0925

The design was downloaded in SPARTAN 3E —
XC3S 500E — 5CP132 using Xilinx ISE 8.1i and verified
using Leonardo Spectrum tool.

Table 6. Device utilization summary—parity generation
Logic Utilization Used |Available |Utilization
No. of Slices 1369 |4656 29%

No. of Slice flipflops [320 9312 3%

No. of 4 input LUTs |2407 9312 25%

No. of bonded IOBs |11 92 11%

No. of GCLKs 8 24 33%

TCLX — Character recognition

Similarly the evolved weight sets for Character
Recognition is presented in Table 7 and Table 8. Proper
convergence of network recognizes the binary patterns
applied and hence the characters as displayed.

The signals as mentioned in Parity function are
displayed for character recognition after simulation.
Feasibility of the GANN promises that the network after
synthesis could be configured on Field Programmable Gate
Arrays (FPGAs) through the commercial Place & Route.

If an eight-bit input, ‘Inp’ is applied, the output,
‘outtresh’ displays the even parity output on the rising
edge of next clock cycle. Input to hidden neuron and
hidden to output neuron weight set is also displayed.

Table 7. Weights and bias of hidden — output layer for character
recognition

Neurons of Output Output Hidden layer
Hidden layer 1 layer 2 Bias
layer
1 0.346 0.5228 —0.3896
2 0.6464 —1.1363 1.4192
3 0.4366 —0.0633 0.9215
4 0.0854 —0.4011 1.0728
Output 22747 2.7092 -
layer Bias

Table 8. Weight set of input-hidden layer of character

recognition
Neurons of
Hidden 1 2 3 4
layer
(Q: _’
Input layer
1 -0.0826 0.4273 0.0031 0.8917
2 .1731 -2.5914 0.8914 (.8123
3 -0.076 -1.6177 2.1266 0.2951
4 0.2617 -0.513 1.4674 1.9791
5 1.2786 -1.6695 2.1176 -0.3155
6 0.4235 2.0695 0.7347 -0.8926
7 -0.5047 -1.2504 29218 1.7954
8 1.8538 -1.3483 0.6531 -3.6263
9 -0.3787 -2.6797 0.3509 1.3465

The design was downloaded in SPARTAN 3E —
XC3S 500E — 5CP132 using Xilinx ISE 8.1i and verified
using Leonardo Spectrum tool. Table 9 shows the device
utilisation summary for TCLX character recognition.

73

Table 9. Device utilization summary—character recognition

Logic Utilization Used | Available | Utilization
No. of Slice Latches 877 9,312 9%
No. of 4 input LUTs 5.213 | 9312 55%
Logic Distribution

No. of occupied Slices 2,817 | 4650 60%
No. of Slices contamning only related logic | 2,817 | 2,817 100%
No. of Slices containing wrelated logic 0 2.817 0%
Total No. of 4 input LUTs 5364 | 9312 57%
No. uged ag logic 5.213

No. uzed ag a route-tlhun 151

No. of bonded IOBs 13 92 14%
IOB Flip Flops 2

No. of GCLEs 20 24 §3%
Total equivalent gate count for design 45.144

Additional TTAG gate count for [OBg 624

Total memory usage (KB) 76104

Conclusion

Genetic Algorithm based Neural Network is designed
to solve eight—bit Parity function and TCLX Character
Recognition applications. The GA learning methods with
different number of hidden layer neurons was investigated
for ascertaining how change in neural network architecture
contributes to the overall fitness of the input-weight
combinations. Combined evolution of structure and
weights for different functions are tried and implemented
successfully. Genetic learning of weight makes the
hardware implementation of FFNN more feasible. GANN
without multiplier in hidden layer contributes to further
reduction in hardware. Thus the GANN to solve
benchmark problems of 8-bit Parity and Character
Recognition is proved to consume lesser area with
increased speed and reduced error. Since fixed control
parameters may hinder the convergence on the latter stage
of generation, dynamic assignment of parameters like the
rate of genetic operators is identified for further research.
And the high potential GA can be exploited to produce
‘Pareto—optimal’ solutions for the multi—objective
optimization.

References

1. Liu J., Liang D. A Survey of FPGA-Based Hardware
Implementation of ANNs. Proc.IEEEConf. — 2005. — P. 915—
918.

Yao X., Liu Y. A New evolutionary system for evolving
artificial neural networks. IEEE Transactions on Neural
Networks. —1997. —No. 8(3). — P. 694-713.

Hikawa H. A Digital hardware pulse—mode neuron with
piecewise—linear activation function.JEEE Transactions on
Neural Networks. — 2003. — No.14(5). — P. 1028-1037.
Rumelhart D., McClelland J. Parallel distributed
processing:Explorations in microstructure of cognition.
Cambridge, MA: MIT Press. — 1986.

Yao X. A review of Evolutionary Artificial Neural Networks.
Int. J. Intell. Syst. — 1993. — No. 8(4). — P. 539-567.
Martinetz T. M., Berkovich S. G., Schulten K. J. Neural-
gas Network for Vector Quantization and its Application to

(9,

Time-series Prediction. IEEE Trans. on Neural Networks, 16. McDonnell J. R. Waagen D. Evolving neural network

1993. — No. 4. — P. 558-569. connectivity. Proc. Amer. Power Conf. 1993. — P. 863-868.

7. Palmes P. P., Hayasaka T., Usui S. Mutation—Based 17.Leung F. H. F., Lam H. K., Ling S. H., Tam P. K. S.
Genetic Neural Network. IEEE Trans. on Neural Networks, Tuning of the Structure and Parameters of a Neural Network
2005. —No.16(3). — P. 587-600. Using an Improved Genetic Algorithm. IEEE Trans. on

8. Hertz, J., Krogh, A., Palmer R. Introductionto the theory of Neural Networks, 2003. — No.14(1). — P. 79-88.
neural computation. Reading, MA:Addison—Wesley. — 1991. 18. Angeline P. J., Saunders G. M. Pollack J. B. An

9. Stork, D. G., Allen, J. D. How to solve the N-bit parity evolutionary algorithm that constructs recurrent neural
problem with two hidden units. Neural networks. — 1992. — networks. IEEE Trans. on Neural Networks, 1994, — No.5(1).
No. 5. —P. 923-926. —P. 54-64.

10. Hohil MLE., Liu D., Smith S. H. Solving N-bit parity 19. Srinivas M., Patnaik, L. M. Genetic algorithms: A survey.
problem using Neural networks. Neural Networks, 1999. — P. IEEE Computer, 1994, — No.27. — P. 17-27.

1321-1323. 20.Franco L., Cannas S. A. Generalization properties of

11. Lavretsky, E. On the exact solution of the parity—N problem modular networks: Implementing the parity function. IEEE
using ordered neural networks. Neural Networks, 2000. — No. Transactions on Neural Networks, 2001. — No.12(6). — P.
13. —P. 643-649. 1306—-1313.

12.Gori M. Tesi A. On the problem of local minima in 21.NirmalaDevi M. Arumugam S. Modeling Of Pulse-
backpropagation. IEEE Trans. on Pattern Anal. Mach. Intell , Coupled Neurohardware Using Simulink. Int. J. Electrical
1992. — No. 14(1). — P. 76-86. Engineering, 2007. — P. 76-84.

13. Islam M. Yao X. Murase K. A Constructive Algorithm for =~ 22. Maeda Y. Tada T. FPGA Implementation of a Pulse Density
training cooperative neural network ensembles. IEEE Trans. Neural Network With Learning Ability Using Simultaneous
on Neural Networks, 2003, — No. 14(4). — P. 820-834. Perturbation. IEEE Trans. on Neural Networks, 2003, —

14. Smalz, R., Conrad, M. Combining evolution with credit No.14(3). — P. 688-695.
apportionment: A new learning algorithm for neural nets. 23.Reyneri L. M. Implementation Issues of Neuro—Fuzzy
Neural Networks, 1994. — No.7(2). — P. 341-351. Hardware: Going Toward HW/SW Co design. IEEE Trans.

15. Odri S. V., Petrovacki D. P. Krstonosic, G. A. Evolutional Neural Networks, 2003. — No.14(1). - P. 176 — 194.

development of multi level neural network. Neural Networks,
1993. — No. 6(4). — P. 583-595.

Received 2009 07 01

M. NirmalaDevi, N. Mohankumar, S. Arumugam. Modeling and analysis of Neuro—Genetic Hybrid System on FPGA //
Electronics and Electrical Engineering. — Kaunas: Technologija, 2009. — No. 8(96). — P. 69-74.

Simultaneous evolution of the architecture and adaptation of weights of an Artificial Neural Network is executed using Genetic
Algorithm (GA) to overcome the local minima problem. Absence of learning unit simplifies the Very Large Scale Integration (VLSI)
realization of evolved Neural Network (NN). Potential of the Neurohardware is tested on two benchmark circuits; Eight—bit even Parity
function and nine-bit Character Recognition. Binary input facilitates the use of comparators instead of multipliers in the hidden layer
neuron, reducing the hardware complexity. While evolving the parity function using GA, the number of hidden layer neuron is reduced
to half, which in turn reduces the silicon area appreciably. Character Recognition Network converges faster with acceptable error.
Simulated results ensure that the designed Neuro—Genetic Hybrid System is not only fast and accurate but also hardware friendly. Ill. 7,
bibl. 23, tabl. 9 (in English; abstracts in English, Russian and Lithuanian).

M. Hupmanagesu, H. Morankymap, C. Apymyram. Mogeaupopanue u aHaiau3 FPGA Heypo-reHermyeckux cucrem //
DJIeKTPOHUKA U djekTpoTexHuka. — Kaynac: Texnonorus, 2009. — Ne 8(96). — C. 69-74.

OnHOBpeMEeHHas! 3BOJIONUS APXUTEKTYPbl M aJanTalis HCKYCCTBEHHBIX HEHPOHOBBIX CETeH HCIOIB3YEeTCSl B T'€HETHUECKOM
AITOPUTME C LENbIO PEHICHHS MECTHBIX. YCIOBHO MaleHbKkHX mpobmem. HemoctaTox oOydeHHS KOMIIEHCHpPYET NPHMEHEHHE B
Pa3BUTHIX HEHPOHHBIX CETSAX TEXHOJOTHH OYEeHBb OOJBLION cTermeHn MHTerpanuu. IloTeHnuanpHoe “Neuro” TeXHHYecKoe obecneueHne
TECTHPOBAJIOCH B JIBYX HCIBITAaTENBHBIX IersiX. JBoMdHas cucTeMa o0jerdaeT MpHUMEHEHHE KOMIIapaTOpOB BMECTO YMHOXKHUTEICH,
paHbIlE NPUMEHSBIINXCS B CKPHITOM HEHPOHHBIM ClI0€ (YMEHBIIACTCS CIIOKHOCTh ammaparypsl). IIprMeHeHHe TIeHeTHYecKOro
ITOpUTMa pacUIMpseT MaciuTad (yHKUMI, B JBa pa3a yMEHBINAET KOJWYECTBO CKPBITHIX HEHPOHHBIX CJIOEB, YTO MO3BOJAET
3HAQUUTENFHO YMEHBIIUTh IUIOLIAAb CHJIMIUS. Pe3ynbraTel MOJEIMPOBAaHHS IPUBOAAT K TOMY, 4YTO CIPOEKTHPOBAaHHAs
HEBPOT€HETHYECKH CMEIIaHHas CHCTeMa ObIBaeT HE TONBKO OBICTpas M TOUHAs, HO M JIETKO COBMECTUMAas C TEXHHUECKUM
obopynoBanueM. M. 7, 6ubmn. 23, tabun. 9 (Ha aHrIMICKOM si3bIKe; pedepaThl Ha aHTTTHHCKOM, PYCCKOM U JIUTOBCKOM $3.).

M. Nirmaladevi, N. Mohankumar, S. Arumugam. FPGA neuroniniy genetiniy sistemy modeliavimas ir analizé // Elektronika ir
elektrotechnika. — Kaunas: Technologija, 2009. — Nr. 8(96). — P. 69-74.

Vienalaiké dirbtiniy neuroniniy tinkly architekttiros ir adaptacijos evoliucija naudojama genetiniame algoritme siekiant iveikti
vietines palyginti mazas problemas. Mokymuy triikuma kompensuoja labai didelés integracijos laipsnio technologijos taikymas
i8sivysciusiuose neuroniniuose tinkluose. Potenciali techniné ,Neuro“ jranga buvo testuojama dviejose bandomosiose grandinése.
Dvejetainé sasaja palengvina taikyti komparatorius vietoj taikyty daugikliy pasléptame neuroniniame sluoksnyje (aparatiira prastinama).
Taikant genetinj algoritma pleCiamas funkcijy mastas, paslépty neuroniniy sluoksniy kiekis sumazintas perpus, kas leidzia gerokai
sumazinti silicio plota. Modeliavimo rezultatai rodo, kad suprojektuota genetiniskai miSri neuro sistema veikia ne tik greitai ir tiksliai,
bet ir yra lengvai derinama su technine jranga. Il. 7, bibl. 23, lent. 9 (angly kalba; santraukos angly, rusy ir lietuviy k.).

74

	Pseudo code of GANN
	AdderModule. Extract the sign, exponent and mantissa of two operands. Compare the exponent and mantissa to check the absolute value and align the decimal points for addition or subtraction.
	Hidden Layer Neuron for Character Recognition: The output of the hidden layer neuron is the multiplied sum of input and weight. Being a binary input, it need not be multiplied by weight. A module to check whether the input is zero or one (i.e.) a comparator will serve the purpose. Each hidden layer neuron comprises nine comparators and eight adders to solve character recognition problem as shown in Fig 6. Hidden layer neuron accepts binary input and the comparator will either pass 0 or the corresponding weight to the adder as a result of input and weight multiplication. For example, if the 9–bit input is 000011111 then the output of the nine comparators from top to bottom would be 0, 0, 0, 0, W5 ~ W9. Comparators are used instead of multipliers to simplify the architecture, which reduces the area significantly and improves the speed. Output of comparators is added and the hidden neuron output OH1 is passed on to the next layer for further computations. Multipliers are used only in output layer neuron of the proposed design.
	Output Layer Neuron for Character Recognition: Each neuron in the output layer utilizes four multipliers and three adders as shown in Fig. 7.The weights are multiplied with the hidden neuron outputs and added to yield the final output. Proper threshold is set in the output adder, to decide the discrete binary output. Multiplier and
	Adder modules are explained already with flowchart.
	Results of simulation
	Conclusion
	References

