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Introduction

Maximum relative Entropy (MrE) optimization
principles were studied in previous paper [1] where convex
optimization was performed incorporating model
constraints resulting from one axis differential drive
robot’s constraints such as the distance between wheels.
MrE Lagrangian was constructed for just one discrete
observation, so it had several things still to be considered.

First, uniform prior was selected when applying
Bayesian filter for recorded data. While principle of
entropy maximization states that the distribution closest to
a priori knowledge has to be selected.

Second, resulting entropy multiple integral did not
have analytical solution of its antiderivative. When solving
this optimization problem had lead to the use of numerical

integration.
Third, observation data arrived in high volumes so
having numerical iterations influenced method’s

performance as soon as the number of observation data
became large.

Updating with observation data constraints

What is a priori knowledge when having observation
data and knowing the model on how different observation
channels relate to each other? The answer is inferred from
the knowledge collected so far. First thing which is known
states that discrete observation’s estimate must have its
expectation at the exact value observed, i.e. its mean has to
fall right at the observed value, and it is not being able to
become *“unobserved” (see work by A.Giffin and
A.Caticha for wider discussion regarding this [2]). Dirac
delta function was used in previous work, but expectation
constraint is used for simplicity here. So we already have
four constraints

_[axp(ax hax = ax,obs = Cax ! (1)
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where a pair of two-axis accelerometers (z axis is not taken
into account in this work) is represented by letters a and b.
Thus g a . are observations of x, y axis of

X,0bs ? 'y, obs
accelerometer b b

X,0bs ? ~'y,obs
observations of x, y axis of accelerometer b. The very first
entropy optimization is a simultaneous optimization taking
into account the mathematical model between all four
observation channels.

A priori distribution is calculated using the measure
of entropy for the continuous-variate Probability Density

Function (PDF):
]daxdaydbxdby' ®)
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here P(a,), P(ay), P(b,), P(by) as from formulas (1) — (4) are
marginal PDFs respectively as follows
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Then normal distribution’s normalization constraint is
again incorporated into final Lagrangian as

+00+00+00-+00
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(10)

All constraints have been enumerated except those of
mathematical model. The mathematical model is necessary
to infer the shape of PDF for every channel. In other
words, if we have a mathematical model which shows how
all four channels relate we can infer which current
observation of all four channels fits the model better and
which fits worse. Second thing, which has to be
considered, is that so far constraints contained the updating
of the first probabilistic moment, i.e. the expectation. The
second probabilistic moment can be taken from the
mathematical model, so it has to be selected with caution.

Updating with model and observation data constraints

An  experiment was performed with two
accelerometers mounted on a rigid body (robot). The main
aim was to infer both accelerometers’ x axis zero bias from
dynamic real time observation data. Axis y had a very
small zero bias so it was neglected in zero bias. So it was
decided to perform an autocalibration experiment. During
it rigid body was being rotated around static rotation center
where all geometrical distances were known (see figure
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Fig. 1. Autocalibration experiment with two accelerometers
mounted on rigid body (robot) and rotating about geometrically
known rotation center

In other words, instant center of rotation during the
whole autocalibration experiment was kept constant and
distances OA, OB and AB geometrical layout were known.
Moreover, angular velocity w was being tried to be kept as
constant as possible, so it was known that angular
acceleration fluctuations were small and there was an
initial honest knowledge that w did not exceed values Wpax
and wp,. Angular velocity and acceleration were derived
from rigid body kinematics relations. One can derive two
main relationships between all four observation channels

a? +aZ =k, (b2 +b?), (12)
ab,+ab, =k, (b +b?). (12)
And this gives two more constraints which

represented model constraints, i.e.
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Constructing Lagrangian using (5) and the constraints
(1) - (4), (10), (13), (14) require the definition of Lagrange
multipliers Kax, Kay, Kox, Kpy for constraints (1) — (4), g for
constraint (13) and p for constraint (14) respectively.
Then it can be proved that the marginal PDFs are
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where normalization constant c,.m, Lagrange multipliers,
and constant ¢, are

¢, = 4%k, + 4P, p+ p?, (19)
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and Lagrange multipliers kg, Ko kp, are calculated
similarly. Coefficients k; and k, depend on geometrical
layout of accelerometers on the rigid body, i.e. they are
calculated from OA, OB and AB distances.

It can be seen from formulas (15) - (24) that
antiderivative function for MrE PDF calculation is found.

8c,c, k2 + 4k,
3¢2Cy + CoCoky



So MrE optimization when finding a priori PDF is an O(1)
operation, which makes this method practical. An attentive
reader would notice that

arg max P, = fa P(a, Ha, (25)
argmax, = [a,P(, o, (26)
arg max P, = jJiobe(bx):ibx , (7)

(28)

argmax P, = +fbyP(by)jby
by -0

and it means that Maximum Likelihood (ML) estimate falls
at the observation reading just like expectation does, and it
confirms that the approach to treat likelihood included in
the a priori PDF was correct indeed, see work [2]. In other
words,

Pold (ax' Cax)= Pold (cax) Pold (ax | Cax ’ Cay ’ Cbx’ be)’ (29)

where model constraints (11) and (12) are updated with
constraints moments.
series distributions with model

Updating time

constraints

Time series observation data can contain not only a
static noise which can be filtered with regular
autoregression efforts, but also a dynamic noise which
could be a result of external forces like a hit to the wall
when accelerometers had an instantaneous peak. Then
averaging does not help even if a huge number of
observation data is collected. There is one more property
of accelerometers which has to be considered. Every axis
has its zero bias. It can be observed by turning the axis to
match the direction of Earth’s gravity force, but the
problem is that this zero drift is also dynamic, i.e. zero
might drift because accelerometer might be aging. Aging
detection and causes are not explored in this paper, but the
question whether the unbiased estimator can be found for
calculation of current zero bias can be answered with yes.
Not without the help of MrE updating with model
constraints. Assume n readings are observed for every
accelerometer’s channel, and assume that at the time
moment i the following measurements are observed: Ca,
Cayis Coxir Chyi.

Other coefficients and variables also have their
notation with index i. Then Lagrangian can be constructed
with relative entropy formula

S[P. Poig]=
Pi(ax,ay,bx,by)-
R(ac.ay.by.by) Ha,da,db,db,
Pold,i axvayvarby

+ (30)
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where

Pold,i (ax ' ax ' ax’ ax ) = l:)old,i (ax )Pold,i (ay )Pold,i (bx )Pold,i (by ) ! (31)
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and each multiplier is just a PDF taken from (15) — (18)
for every channel respectively. This implies that
noncommuting constraints (see work [1,2] for discussion
on commutativity) will be used when comparing it to the
observation data constraints. In other words, observation
data plays its role for calculating MrE distributions for
time moment i for each channel. And from pre-calculated
Lagrange multipliers can be used for further inference.

Important question is whether first or second
probabilistic moment will be used for updating with model
constraints. After multiple cases analysis it was found that
updating with second probabilistic moment gives little
benefit when finding an analytical posteriori. And updating
with first probabilistic moment would help avoid time
consuming antiderivative numerical calculations. After
some manipulation with (11) and (12) it is found that these
constraints could be rewritten as

a, =bk, +b [k, k2 - (32)

a,; = bk, Thy/k, —kZ - (33)
which makes them acceptable as model constraints and
preserves relatively easy calculation of antiderivative
function of the entropy multiple integral (30). However,
with n observations there are 4n unknowns and only 2n
equations were at hand so far. Then two more model
constraints are used which bring more constraints on time
series over time domain, i.e.

(34)
(35)

ax,i - ax,i+l =C+ bx,i - bx,i+1’

ayvi _by,i = C4 ’

where constant c; and ¢, are calculated using cubic spline
derivations when three main inputs (in addition to rough
geometrical layout distances) are taken into the account: At
which was a time period between two samples, Wy, and
Wnin Were maximum and minimum angular velocities
during the whole autocalibration experiment according to a
priori knowledge.

A raw MrE calculation has a performance of O(n),
but the problem is that the signs in formulas (32) and (33)
are not known in advance. Because of that local
optimization over a certain window has to be run first. The
local processing window (LPW) is selected to contain 6
samples, which give an asymptotic notation as O(6nLog,n)-

Unlike particle filters methods [3], this method has the
analytical representation of normalization constant. Also it
shows how to extract more information from dynamic
measurements (see work [4]).

After the baseline of observation data was found
satisfying all time-domain model constraints, the unbiased
estimator for calculating zero bias can be approximated
and found from Normal distribution as

ax.bias = Zn:(ax‘emropy,i 7Cax )/n ~ OOlg ! (36)
i=1

bx,bias = i(bx,emropyj - Cbx )/n ~ 00659 ! (37)
i=1

where g is Earth’s gravity.
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46


http://arxiv.org/abs/0708.1593�

	Real Time Analysis of Accelerometer Pair’s Observations Based on Maximum Relative Entropy Optimization Satisfying Model Constraints

