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Introduction

It is well known that the kinematics and dynamics of
robots are highly nonlinear with existing coupling between
joints. To cope with the nonlinearity and uncertainty of the
robot dynamics, it has been shown in [1, 2] that a simple
joint space controller such as the PD or PID feedback is
effective for set-point control. However, in some
applications, it is necessary to specify the motion in much
more details than simply stating the desired final position.

In trajectory tracking control, a model-based robot
controller that is tuned or calibrated to work perfectly
using exact models of the system may give rise to very
good control performance [3-5]. However, the assumption
of having exact models of the robot system also means that
the robot is not able to adapt to any changes and
uncertainties in its models and environment. For example,
when a robot picks up several tools of different
dimensions, unknown orientations or gripping points, the
overall dynamics of robot changes and is therefore difficult
to derive exactly.

The way by which human manipulates his arms easily
and skillfully shows that we do not need the exact
knowledge of the lengths and dynamics of our arms, the
desired joint angles to reach for an object and the exact
geometric relationship between our eyes and arms.

In the most of robot applications, a desired position
for the end-effector is usually specified in task space or
Cartesian space. In order to move the robot end-effector to
the desired position, the exact knowledge of the kinematics
is required to solve the inverse kinematics problem to
generate the desired position in joint space [6-8]. When
the control problem is formulated directly in task space,
the need to solve the inverse kinematics problem is
eliminated [6-8].

To overcome the problem of parameter uncertainty
several set-point controllers [6, 7] were proposed in the
task space recently. Using the proposed controllers, other
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open problems such as force control with uncertainties [9]
and control of robot fingers with uncertain contact points
[10] can be resolved in a unified formulation. However, the
results in [6, 7] are focusing on parameter uncertainty in
set-point control of robot.

Recently, an adaptive jacobian controller was
proposed for trajectory tracking control of robot
manipulators in the task space [11, 12]. The controller does
not require the exact knowledge of jacobian matrix and
dynamic parameters. However in dynamics of robot
manipulators, there are unstructured uncertainties such as
friction, disturbance and un-model dynamics that may
cause an unstable closed loop control system.

In this paper, we propose a task space robust adaptive
tracking control scheme based on dynamical partitioning
approach that can deal with the uncertainties in both
kinematics and dynamics of rigid-link robots. The
proposed control scheme does not need accurate
information about robot kinematics and dynamics.
Sufficient conditions to guarantee system stability are
provided and simulation results are presented to show the
effectiveness of the control scheme proposed.

Robot dynamics and problem formulation

The joint space dynamics of an "-link rigid-body
robot manipulator can be described by the following
second order nonlinear vector differential equation, so-
called Euler-Lagrange equation [13]

M(@)i+V (.d)a+G(a)+Fog+F(@)+ Ty =2(t). (1)
where q(t) R" denotes the joint angles of the manipulator;
G(t) and ¢(t) — the vectors of joint velocity and joint
acceleration, respectively; M(q)e R™ - the inertia matrix

which is symmetric and positive definite; V, (q,¢)g € R" -
a vector function containing coriolis and centrifugal forces;
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G(g)e R" - a vector function consisting of gravitational
F, e R™ -
dynamic friction coefficients; F,(q)e R" - the vector of
unstructured friction effects such as static friction terms;

forces; a diagonal matrix of viscous and

T, e R"— the vector of any generalized input due to

disturbances or un-modeled dynamics; z(t)e R"- the
vector function consisting of applied generalized torques.
According to [11, 12], the robot dynamics described
above has the following properties:
Property 1. The inertia matrix M(q) is symmetric
and positive definite for all g e R" and M(q) is uniformly
bounded above and below. That is

1l <M(Q)< gl or gy <[M(q) < 417, (2)

where |of stand for the Euclidean norm; s, and p, -
positive constant.

Property 2. The matrix M(q)-2V,(q,q) is skew-
symmetric. That is

y'M(q)y =2y Vn(a,g)y ,vy,q,GeR".

Property 3. The left side of (1) can be linearly
parameterized. This property may be expressed as

M (a)i + Vi (0,6)d + G(a) =W (a.6.6)P .

where per™— a parameter vector; W(g,d,6) — a known

matrix of robot function depending on the joint variables,
joint velocities and joint accelerations.

In most applications of robot manipulators, a desired
path for the end-effector is specified in task space such as

visual space or Cartesian space. Let X € R" be a task
space vector defined by [11]

X =h(q),

where  h(c)eR" > R" generally a nonlinear

transformation describing the relation between the joint
space and the task space. According to [11, 12], the task

space velocity X is related to joint space velocity ¢ as

3)

(4)

(5)

X =3(a)g. (®)

where J(q)e R™"is the Jacobian matrix from joint space
to task space. From (6) we have

G=J"a)X. (7)

Dynamical partitioning approach

In the presence of uncertainty such as unknown
parameters, frictions, load variation, disturbances and un-
model dynamics, dynamics of robotic systems are usually
not totally known. All the terms in (1) can be reduced
without loss of any generality into two parts:
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M(a)=My(a)+M,(a),
Vm(q: q)zvm,k(q: Q)+Vm,u(ql q)’
G(q)= Gy (a)+Gy(a),

where M, (q), V,.(q9,9) and G,(q) - the known parts;

(8)

M,(a), V,..(q.g) and G,(q) denote the unknown parts of

M(q), V,(q.G) and G(q) respectively. For design of

robust adaptive controller, the following assumptions
should be established.
Assumption 1. The terms on frictions are bounded as

[Fey+F(y) =&, + &yl oy eR™. (9
Assumption 2. Lumped uncertainty T, is bounded as
[Tl <& (10)

where &, , &, and & - known and positive constants. It is

worth mentioning that, although there are several models
for representing the influence of friction, frictions are very
difficult to determine and all existing models are at best
approximate [14-15]. It is also important that, although
frictions are passive, but dynamic friction must be
compensated for in the tracking problem, and static friction
must be compensated for in set-point regulation. Thus, due
to the lack of structural information, frictions as well as
disturbances must be bounded.

Robust adaptive control

From Let us define a vector X o € R"as
X, =a(Xy—X)+ X, (11)

X
position sensor; X, € R" — a desired trajectory specified

where « — positive constant; — measured from a

in task space; Xd e R" - the desired velocity specified in

task space. Many commercial sensors are available for
measurement of X, such as vision systems,
electromagnetic measurement systems, position sensitive
detectors or laser tracking systems. To design of robust
adaptive control, we define a task space sliding vector as

Zy=Xp-X =a(Xg - X)+(Xg - X). (12)

We define the task space position error
Xy —X =e(t) and velocity error X, — X =¢€(t) therefore
we have

Z, =ae(t)+€(t). (13)
From (7), we have
4, =3 (@)X, - (14)

The derivative of (12) respect to time can be written
as



g, =3"a)X, +3I M a)X,. (15)
We define a joint space sliding vector as
Z4=9,-0. (16)

Jacobian matrix is multiplied by both side of (16) and
from (6) and (12), we have

Iaz, =3, -I@a=%,-X=2,. (7
The torque «(t) is related to force f(t) as [13]
7(t)=3"(q)f (). (18)

According to (8), (13), (14), (15) and (18) robust
adaptive control is proposed to the following form

T(t)= M k(q)qp +Vm,k(qvq)qp +Gk(q)+ KZy+
+37(q)e(t)+u, +uy.

where K is positive constant; JT(q)e R™" is transpose

(19)

Jacobian matrix; u, e R"is adaptive control vector and

u, € R"is robust control vector. (19) is substituted into
(1), thus we have

M (a)d +Vin(a, 6)d + G(a)+ Faq + Fs(d)+ Ty =
=My ()i +Vink (0. 6)dp + Gy (a) + K Zg +
+J37(q)e(t)+u, +u,.
By substituting (8) into (20), it is simplified as
My (@) +Viny (0, 4)d + Gy (@) + Fy G+ Fs(d)+ Tg =
= Mic(a)dp )+ Ving (0. a)tp —a)+
+KZq+37(q)elt)+u, +u,.

(20)

(21)

From (14), we have

q:CIp_quq:qp_Zp- (22)
Now, we define the following equation
AA=F,q+F,(4)+T,, (23)

where AA is containing unstructured uncertainties. (16),
(22) and (23) are substituted into (18) and it is simplified
as:

My (a)Zg +Vim, (@.0)Zq + K Zq+ 37 (qle(t) =

= Mu(Q)q'*'Vm,u(q,q)q +Gy (Q)+AA_Ua —Ur. (24)
By using of property 3 in section 2, we have
M, (@) +Vy,, (0,6)d+G,(a)=W(a.6,6)P. (25)

We propose adaptive control u, to the following
form:

u, =W(q,4,6)P, (26)
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where P eR' is estimation of P. P—P =P is defined as
estimation error. Then, (25) and (26) are substituted into
(24) as:

Mk(q)zq +Viny (q,C])Zq +KZg + JT(q)e(t) =

=W(q,q,§)P+AA—u,. (27)
Stability proof

To prove the stability of closed loop system, the
Lyapunov function candidate is presented as
V= eles22IM(q)Z, + 2P (28)

The derivative of (30) respect to time can be written
as
. 1. .~k
Vv =eTe+§z;M(q)zq +Z;M(q)Z,-P"P. (29)

If (27) is substituted in to (29) then by using of
property 2 in section 2, we have

V=eleo K||Zq||2 —(3(a)zq T elt)+ zTwP +

+28(AA-u,)-PTP. (30)
(13) and (17) are substituted into (30) as
V = —alet) - K|zq[” +zgwP + 2] (AA-u, )~
_PTP, (31)

According to (23) and assumptions 1 and 2, we have

[aA] < &, + &l + .- (32)
We define the following equation
p=8& +&efdl+< (33)
According to (32) and (33), we have
|aAl| < p. (34)
According to (31), (32), (33) and (34), we have
V < —ae(t)] - K||zq||2 +ZgWP +[Z4 o -
- Z(Eur -pT |5 (35)

We propose robust control u, and adaptive law P to
the following forms

B a0 o
ur ={[Zq  P=WT(q,6.4)Z,.  (36)
0 Jol-c

(36) is substituted into (35) and it is simplified as

V <—afe(t) - K|z,| - (37)



According to (37), trajectory tracking error in task
space converge to zero therefore, the closed loop system is
global asymptotic stable by proposed control. Hence, (19),
(26) and (36) are robust adaptive controller.

(7(t):Mk(q)qp+Vm,k(q:Q)Qp+Gk(q)+KZq+
+37(q)e(t)+uy +uy,
) ua=vi(q,q,q')ﬁ, )
S o
U =1 |24 P=WT(q,0,6)Zq,
0 Jzqf-0

\

The control law (38) is formed by measuring joint
positions g, the joint velocities ¢ and the end-effector

positions X and the end-effector velocities X . A joint
position is commonly measured by an optical encoder and
a joint velocity may be measured directly or by soft
derivative of joint position and many commercial sensors
are available for measurement of X, such as vision
systems, electromagnetic measurement systems, position

sensitive detectors or laser tracking systems. However, X
is rarely measured in robotic applications while vision
technique can be used for this purpose. Alternatively,
vision technique was used to measure the end-effector

position X precisely and then X can be computed by (6).
Simulation results

In order to verify the performance of proposed
control schemes, as an illustration, we will apply the above
presented controller to a two-link elbow robot manipulator.
The dynamic of the two-link elbow robot manipulator can
be described in the following differential equation

{Mn Mu}{quhl(q,q)} _ {ul(t)] (29)
My My | 6, hz(q1 q) uz(t)
M, = (Izzm2 +21,1, cos(q, )+ 1,7 (m, + mz)), (40)
MlZ = le = (|22m2 + Il|2m2 Cos(ql))’ (41)
M,, = Izzmz , (42)
hy(q.4) =
—myhly sin(gp )io? — 2malyl, sin(ay )aydy,
(43)
= 4+ malag cos(ay +dp )+ (Mg +mj Jlyg cos(qy ),
+ Fdlql + FS]_ (Q1)+Td1'
. m»l,gcos m-l41, sin 2
hz(q,q)= ( 2 29 (Q1+92))+( 2lil2 (Q2)C11) (44)
+ Fdz gz + F52 (q2)+Td2 '

where |, and |, — lengths of the first and second links
respectively; m, and m, — masses of the first and second
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links respectively; g - the gravitational force; F, -
dynamic friction; F,(q) - static friction; T, — disturbance
and un-modeled dynamics. u, and u, are input torques of

the first and second links respectively. Robot parameters
which have been used in this simulation are given in Table.
1.

Table 1. Parameters of Two Link Elbow Robot

l, =1 l, =1

m =1 m, =1

g=938 Ty, =Ty, =3
Fo, =Fy, =2 Fsl(ql): Fsz(qZ)zl

Parameters of Controller are shown in Table. 2.

Table 2. Parameters of controller

I, =0.9 I, =09
m, =0.9 m,, =0.5
9 =9 a=04
K =100 p=30

Regression matrix is shown in Table. 3. Physical
parametric vector of adaptive control is presented as:

m,l,g, (m, +m, ), g,] -(45)

The Jacobian matrix is in the form of

2 2
m, I, 1, m Iu](mul+mu2)

Uz Uy Ul Uy

Pl

—1;sin(q,) -1, sin(g, +q,) —1,sin(q, +q,)
J — 1 1 2 1 2 2 1 2 .
@ {hcos(ql)ﬂzcos(qﬁqz) Izcos(qﬁqu (46)
The kinematic equation is given by
. {ll cos(d,) +1, cos(g, +qz)}_ an
IlSIn(ql) + |2 Sln(ql + q2)

Table 3. Regression matrix

.. .. W,, = 2co0s g, +COoS |
W=+, A
Wy, =, W,, = cos(q, + )
W, = cos(q, ) Wy, =G, +0,
W,, =cos(d, )i, +sin(q, )d, W,, =0
W, = COS(Ql + QZ) W,y =0

Desired paths in the task space and initial conditions
are shown in Fig. 1 and Fig. 2. The task space control is
simulated to track the desired path. According to Fig. 3 and
Fig. 4, the performance of control system is satisfactory
and trajectory tracking errors in task space.

As one can see from these two figures, less than one
second, tracking errors converges to zero from 45 mm and
26 mm at joint 1, 2, respectively. Fig. 5 and Fig. 6 illustrate
the input control commands of the first and the second
joints, respectively which both of them are at acceptable
range regarding manipulator parameters and practical
standpoint. Physical parameters of adaptive control are
estimated as shown in Fig. 7 and Fig. 8.
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Conclusions

In this paper, based on the physical properties of the
robot manipulator, the adaptive control is designed for
compensation of parameter uncertainties. But the robot
dynamics have structured and unstructured uncertainties
therefore adaptive control cannot success in presence of
unstructured uncertainties. Therefore, by addition of a
robust control based on dynamical partitioning approach to
adaptive control, we can design a robust adaptive control
for compensation of structure and unstructured
uncertainties in the task space. In this method, trajectory
tracking errors in task space are directly observed by
sensor and we do not necessary to use of inverse
kinematic. It was proven that the closed loop system has
global asymptotic stability. Simulation results are shown
good performance of proposed control.
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