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Introduction 
 

It is well known that the kinematics and dynamics of 
robots are highly nonlinear with existing coupling between 
joints. To cope with the nonlinearity and uncertainty of the 
robot dynamics, it has been shown in [1, 2] that a simple 
joint space controller such as the PD or PID feedback is 
effective for set-point control. However, in some 
applications, it is necessary to specify the motion in much 
more details than simply stating the desired final position.  

In trajectory tracking control, a model-based robot 
controller that is tuned or calibrated to work perfectly 
using exact models of the system may give rise to very 
good control performance [3–5]. However, the assumption 
of having exact models of the robot system also means that 
the robot is not able to adapt to any changes and 
uncertainties in its models and environment. For example, 
when a robot picks up several tools of different 
dimensions, unknown orientations or gripping points, the 
overall dynamics of robot changes and is therefore difficult 
to derive exactly. 

The way by which human manipulates his arms easily 
and skillfully shows that we do not need the exact 
knowledge of the lengths and dynamics of our arms, the 
desired joint angles to reach for an object and the exact 
geometric relationship between our eyes and arms.  

In the most of robot applications, a desired position 
for the end-effector is usually specified in task space or 
Cartesian space. In order to move the robot end-effector to 
the desired position, the exact knowledge of the kinematics 
is required to solve the inverse kinematics problem to 
generate the desired position in joint space [6–8]. When 
the control problem is formulated directly in task space, 
the need to solve the inverse kinematics problem is 
eliminated [6-8]. 

To overcome the problem of parameter uncertainty 
several set-point controllers [6, 7] were proposed in the 
task space recently. Using the proposed controllers, other 

open problems such as force control with uncertainties [9] 
and control of robot fingers with uncertain contact points 
[10] can be resolved in a unified formulation. However, the 
results in [6, 7] are focusing on parameter uncertainty in 
set-point control of robot.  

Recently, an adaptive jacobian controller was 
proposed for trajectory tracking control of robot 
manipulators in the task space [11, 12]. The controller does 
not require the exact knowledge of jacobian matrix and 
dynamic parameters. However in dynamics of robot 
manipulators, there are unstructured uncertainties such as 
friction, disturbance and un-model dynamics that may 
cause an unstable closed loop control system. 

In this paper, we propose a task space robust adaptive 
tracking control scheme based on dynamical partitioning 
approach that can deal with the uncertainties in both 
kinematics and dynamics of rigid-link robots. The 
proposed control scheme does not need accurate 
information about robot kinematics and dynamics. 
Sufficient conditions to guarantee system stability are 
provided and simulation results are presented to show the 
effectiveness of the control scheme proposed. 

 
Robot dynamics and problem formulation 

 
The joint space dynamics of an n -link rigid-body 

robot manipulator can be described by the following 
second order nonlinear vector differential equation, so-
called Euler-Lagrange equation [13] 

( ) ( ) ( ) ( ) ( )tTqFqFqGqqqVqqM dsdm τ=+++++  , , (1) 

where ( ) nRtq ∈ denotes the joint angles of the manipulator; 
( )tq  and ( )tq  – the vectors of joint velocity and joint 

acceleration, respectively;  ( ) nnRqM ×∈  – the inertia matrix 

which is symmetric and positive definite; ( ) n
m RqqqV ∈, – 

a vector function containing coriolis and centrifugal forces;  
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( ) nRqG ∈  – a vector function consisting of gravitational 

forces; nn
d RF ×∈ – a diagonal matrix of viscous and 

dynamic friction coefficients; ( ) n
s RqF ∈ – the vector of 

unstructured friction effects such as static friction terms; 
n

d RT ∈ – the vector of any generalized input due to 

disturbances or un-modeled dynamics; ( ) nRt ∈τ – the 
vector function consisting of applied generalized torques.  

According to [11, 12], the robot dynamics described 
above has the following properties: 

Property 1. The inertia matrix ( )qM  is symmetric 

and positive definite for all nRq∈  and ( )qM  is uniformly 
bounded above and below. That is  

( ) ( ) 2121 µµµµ ≤≤≤≤ qMorIqMI , (2) 

where   stand for the Euclidean norm; 1µ  and 2µ  – 
positive constant. 

Property 2. The matrix ( ) ( )qqVqM m  ,2−  is skew-
symmetric. That is 

( ) ( ) n
m

TT RqqyyqqVyyqMy ∈∀=  ,,,,2 . (3) 

Property 3. The left side of (1) can be linearly 
parameterized. This property may be expressed as 

( ) ( ) ( ) ( )PqqqWqGqqqVqqM m  ,,, =++ , (4) 

where mrp∈ – a parameter vector; ( )qqqW ,,  – a known 
matrix of robot function depending on the joint variables, 
joint velocities and joint accelerations.  

In most applications of robot manipulators, a desired 
path for the end-effector is specified in task space such as 
visual space or Cartesian space. Let nRX ∈  be a task 
space vector defined by [11] 

( )qhX = , (5) 

where ( ) nn RRh →∈  – generally a nonlinear 
transformation describing the relation between the joint 
space and the task space. According to [11, 12], the task 
space velocity X  is related to joint space velocity q  as  

( )qqJX  = , (6) 

where ( ) nnRqJ ×∈ is the Jacobian matrix from joint space 
to task space. From (6) we have 

( )XqJq  1−= . (7) 

Dynamical partitioning approach 
 

In the presence of uncertainty such as unknown 
parameters, frictions, load variation, disturbances and un-
model dynamics, dynamics of robotic systems are usually 
not totally known. All the terms in  (1) can be reduced 
without loss of any generality into two parts:  

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )








+=

+=
+=

,

,,,,
,

,,

qGqGqG
qqVqqVqqV

qMqMqM

uk

umkmm

uk
  (8) 

where ( )qM k , ( )qqV km ,,  and ( )qGk  – the known parts; 
( )qM u , ( )qqV um ,,  and ( )qGu  denote the unknown parts of 
( )qM , ( )qqVm ,  and ( )qG   respectively. For design of 

robust adaptive controller, the following assumptions 
should be established. 

Assumption 1. The terms on frictions are bounded as 

( ) n
ffsd RyyyFyF ∈∀+=+ ,
10

ξξ .         (9) 

Assumption 2. Lumped uncertainty dT is bounded as 

tdT ξ≤ ,                               (10) 

where
0f

ξ , 
1f

ξ  and tξ  – known and positive constants. It is 
worth mentioning that, although there are several models 
for representing the influence of friction, frictions are very 
difficult to determine and all existing models are at best 
approximate [14–15]. It is also important that, although 
frictions are passive, but dynamic friction must be 
compensated for in the tracking problem, and static friction 
must be compensated for in set-point regulation. Thus, due 
to the lack of structural information, frictions as well as 
disturbances must be bounded.  
 
Robust adaptive control 
 

From Let us define a vector n
p RX ∈ as 

( ) ddp XXXX  +−= α  (11) 

where α – positive constant; X  – measured from a 
position sensor; n

d RX ∈  – a desired trajectory specified 

in task space; n
d RX ∈ – the desired velocity specified in 

task space. Many commercial sensors are available for 
measurement of X , such as vision systems, 
electromagnetic measurement systems, position sensitive 
detectors or laser tracking systems. To design of robust 
adaptive control, we define a task space sliding vector as 

( ) ( )XXXXXXZ ddpx
 −+−=−= α . (12) 

We define the task space position error 
( )teXX d =−  and velocity error ( )teXX d  =−  therefore 

we have 

( ) ( )teteZ x += α . (13) 

From (7), we have 

( ) pp XqJq  1−= . (14) 

The derivative of  (12) respect to time can be written 
as 
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( ) ( ) ppp XqJXqJq  11 −− += . (15) 

We define a joint space sliding vector as 

qqZ pq  −= . (16) 

Jacobian matrix is multiplied by both side of (16) and 
from (6) and (12), we have 

( ) ( ) ( ) xppq ZXXqqJqqJZqJ =−=−=  . (17) 

The torque ( )tτ  is related to force ( )tf  as [13] 

( ) ( ) ( )tfqJt T=τ . (18) 

According to (8), (13), (14), (15) and (18) robust 
adaptive control is proposed to the following form 

( ) ( ) ( ) ( )
( ) ( ) .

,,

ra
T

qkpkmpk

uuteqJ

ZKqGqqqVqqMt

+++

++++= τ
 (19) 

where K  is positive constant; ( ) nnT RqJ ×∈  is transpose 

Jacobian matrix; n
a Ru ∈ is adaptive control vector and 

n
r Ru ∈ is robust control vector. (19) is  substituted into 

(1), thus we have 

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) .

,
,

,

ra
T

qkpkmpk

dsdm

uuteqJ

ZKqGqqqVqqM
TqFqFqGqqqVqqM

+++

++++=
=+++++





 
(20) 

By substituting (8) into (20), it is simplified as 

( ) ( ) ( ) ( )
( )( ) ( )( )

( ) ( ) .

,

,

,

,

ra
T

q

pkmpk

dsduumu

uuteqJZK

qqqqVqqqM
TqFqFqGqqqVqqM

++++

+−+−=

=+++++





 
(21) 

From (14), we have 

ppqp ZqqZqq  −=−= , . (22) 

Now, we define the following equation 

( ) dsd TqFqFA ++=∆  , (23) 

where A∆  is containing unstructured uncertainties. (16), 
(22) and (23) are substituted into (18) and it is simplified 
as: 

( ) ( ) ( )
( ) ( ) ( ) .,

)(,

, rauumu

T
qqmqk

uuAqGqqqVqqM

teqJZKZqqVZqM k

−−∆+++=

=+++




 

(24) 

By using of property 3 in section 2, we have 

( ) ( ) ( ) ( )PqqqWqGqqqVqqM umu u
 ,,, =++ . (25) 

We propose adaptive control au  to the following 
form: 

( )PqqqWua
ˆ,, = , (26) 

where lRP∈ˆ  is estimation of P . PPP ~ˆ =−  is defined as 
estimation error. Then, (25) and (26) are substituted into 
(24) as: 

( ) ( ) ( )
( ) .~,,

)(,

r

T
qqmqk

uAPqqqW

teqJKZZqqVZqM k

−∆+=

=+++




 

(27) 

 
Stability proof 
 

To prove the stability of closed loop system, the 
Lyapunov function candidate is presented as 

( ) PPZqMZeeV T
q

T
q

T ~~
2
1

2
1

2
1

++= . (28) 

The derivative of (30) respect to time can be written 
as 

( ) ( ) PPZqMZZqMZeeV T
q

T
qq

T
q

T  ˆ~
2
1

−++= . (29) 

If (27) is substituted in to (29) then by using of 
property 2 in section 2, we have 

( )( ) ( )

( ) .ˆ~

~2

PPuAZ

PWZteZqJZKeeV

T
r

T
q

T
q

T
qq

T





−−∆+

++−−=
 

(30) 

  (13) and (17) are substituted into (30) as 

( ) ( )

.ˆ~

~22

PP

uAZPWZZKteV

T

r
T
q

T
qq





−

−−∆++−−= α
 

(31) 

According to (23) and assumptions 1 and 2, we have 

tff qA ξξξ ++≤∆ 
10

. (32) 

We define the following equation 

tff q ξξξρ ++= 
10

. (33) 

According to (32) and (33), we have 

.ρ≤∆A  (34) 

According to (31), (32), (33) and (34), we have 

( )

.ˆ~

~22

PPuZ

ZPWZZKteV

T
r

T
q

q
T
qq





−−

−++−−≤ ρα
 

(35) 

We propose robust control ru  and adaptive law P̂  to 
the following forms 

( ) .,,ˆ,
00

0
q

T

q

q
q

q

r ZqqqWP
Z

Z
Z

Z

u 

=










=

≠
=

ρ

 (36) 

  (36) is substituted into (35) and it is simplified as 

( ) 22
qZKteV −−≤ α . (37) 
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According to (37), trajectory tracking error in task 
space converge to zero therefore, the closed loop system is 
global asymptotic stable by proposed control. Hence, (19), 
(26) and (36) are robust adaptive controller. 

     
( ) ( ) ( ) ( )

( ) ( ) ,

,,

ra
T

qkpkmpk

uuteqJ

ZKqGqqqVqqMt

+++

++++= τ
 

( )PqqqWua
ˆ,, = , 

  ( ) .,,ˆ

,00

,0
q

T

q

q
q

q

r ZqqqWP
Z

Z
Z

Z

u 

=










=

≠
=

ρ

 

(38) 

The control law (38) is formed by measuring joint 
positions q , the joint velocities q  and the end-effector 

positions X and the end-effector velocities X . A joint 
position is commonly measured by an optical encoder and 
a joint velocity may be measured directly or by soft 
derivative of joint position and many commercial sensors 
are available for measurement of X , such as vision 
systems, electromagnetic measurement systems, position 
sensitive detectors or laser tracking systems. However, X  
is rarely measured in robotic applications while vision 
technique can be used for this purpose. Alternatively, 
vision technique was used to measure the end-effector 
position X precisely and then X can be computed by (6).   
 
Simulation results 
 

In order to verify the performance of proposed 
control schemes, as an illustration, we will apply the above 
presented controller to a two-link elbow robot manipulator. 
The dynamic of the two-link elbow robot manipulator can 
be described in the following differential equation 

( )
( )

( )
( )






=








+
















tu
tu

qqh
qqh

q
q

MM
MM

2

1

2

1

2

1

2221

1211

,
,







, (39) 

( )( ))(cos2 21
2

12212
2

211 mmlqllmlM +++= , (40) 

( )( )12212
2

22112 cos qmllmlMM +== , (41) 

2
2

222 mlM = , (42) 

( )
( ) ( )
( ) ( ) ( )
( )

,
,

coscos
,sin2sin

,

111 11

11212122

212212
2

22212

1










+++
++++

−−
=

=

dsd TqFqF
qglmmqqglm

qqqllmqqllm

qqh







 (43) 

( ) ( )( ) ( )( )
( )





+++
++

=
,

,sincos
,

222 22

2
122122122

2
dsd TqFqF

qqllmqqglm
qqh




  (44) 

where 1l  and 2l  – lengths of the first and second links 
respectively; 1m  and 2m  – masses of the first and second 

links respectively; g  – the gravitational force; dF  – 
dynamic friction; ( )qFs   – static friction; dT  – disturbance 
and un-modeled dynamics.  1u  and 2u  are input torques of 
the first and second links respectively. Robot parameters 
which have been used in this simulation are given in Table. 
1.  

Table 1. Parameters of Two Link Elbow Robot  
11 =l  12 =l  

11 =m  12 =m  

8.9=g  5
21
== dd TT  

2
21
== dd FF  ( ) ( ) 121 21

== qFqF ss   

 

Parameters of Controller are shown in Table. 2. 

Table 2. Parameters of controller 
9.0

2
=kl  9.0

1
=kl  

5.0
2
=km  9.0

1
=km  

4.0=α  9=kg  
30=ρ  100=K  

 
Regression matrix is shown in Table. 3. Physical 

parametric vector of adaptive control is presented as: 

( ) ( )[ ]Tuuuuuuuuuuuuuuu glmmglmmmlmllmlP
1212221122122

22ˆ ++= .(45) 

The Jacobian matrix is in the form of 









+++
+−+−−

=
)cos()cos()cos(
)sin()sin()sin(

)(
21221211

21221211

qqlqqlql
qqlqqlql

qJ . (46) 

The kinematic equation is given by 









++
++

=
)sin()sin(
)cos()cos(

21211

21211

qqlql
qqlql

X . (47) 

Table 3. Regression matrix  

2111 qqW  +=  ( ) ( )
( ) ( ) 21212

221212

sin2sin
coscos2

qqqqq
qqqqW




−−
+=  

113 qW =  ( )2114 cos qqW +=  

( )115 cos qW =  
2121 qqW  +=  

( ) ( ) 12222 sincos
1

qqqqW  +=  023 =W  

( )2124 cos qqW +=  025 =W  
 
Desired paths in the task space and initial conditions 

are shown in Fig. 1 and Fig. 2. The task space control is 
simulated to track the desired path. According to Fig. 3 and 
Fig. 4, the performance of control system is satisfactory 
and trajectory tracking errors in task space.  

As one can see from these two figures, less than one 
second, tracking errors converges to zero from 45 mm and 
26 mm at joint 1, 2, respectively. Fig. 5 and Fig. 6 illustrate 
the input control commands of the first and the second 
joints, respectively which both of them are at acceptable 
range regarding manipulator parameters and practical 
standpoint. Physical parameters of adaptive control are 
estimated as shown in Fig. 7 and Fig. 8. 
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Fig. 1. Desired path 

1dX in task space 
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Fig. 2. Desired Path 

2dX in Task Space  
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Fig. 3. Trajectory tracking error 

1dX in task space 
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Fig. 4. Trajectory tracking error 

2dX in task space 
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Fig. 5. Input control of the first joint 
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Fig. 6. Input control of the second joint 
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Fig. 7. Parameter estimations of adaptive control 
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Fig. 8. Parameter estimations of adaptive control 
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Conclusions 
 

In this paper, based on the physical properties of the 
robot manipulator, the adaptive control is designed for 
compensation of parameter uncertainties. But the robot 
dynamics have structured and unstructured uncertainties 
therefore adaptive control cannot success in presence of 
unstructured uncertainties. Therefore, by addition of a 
robust control based on dynamical partitioning approach to 
adaptive control, we can design a robust adaptive control 
for compensation of structure and unstructured 
uncertainties in the task space. In this method, trajectory 
tracking errors in task space are directly observed by 
sensor and we do not necessary to use of inverse 
kinematic. It was proven that the closed loop system has 
global asymptotic stability. Simulation results are shown 
good performance of proposed control.  
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M. R. Soltanpour, S. E. Shafiei. Robust Adaptive Control of Manipulators in the Task Space by Dynamical Partitioning 
Approach // Electronics and Electrical Engineering. – Kaunas: Technologija, 2010. – No. 5(101). – P. 73–78. 

In this paper, robust adaptive control of manipulators in the task space is developed based on dynamical partitioning approach. This 
novel approach of manipulators tracking in the task space can overcome on both parametric uncertainties and unstructured uncertainties 
such as friction, disturbance and un-modeled dynamics using adaptive and robust capabilities, respectively. The feedback linearization 
method is applied to cancel certain nonlinearities by using of dynamical partitioning approach. The proposed control scheme is more 
robust than model based adaptive control. The global asymptotic stability of the closed loop system is verified by Lyapunov method. To 
show the performance of the control system, a case of study is carried out on a two-links elbow robot by simulations. Ill. 8, bibl. 15, tabl. 
3 (in English; abstracts in English, Russian and Lithuanian). 

 
 

М. Р. Солтанпур, С. Э. Шафей. Исследование адаптивного активного контроля манипулятора робота при сегментации 
рабочего пространства // Электроника и электротехника. – Каунас: Технология, 2010. – № 5(101). – C. 73–78. 

Описывается новый способ слежения рабочего пространства манипулятора с учетом погрешностей параметров, влияния 
трения случайных отказов и динамики работы в целом. Приложена схема контроля, которая значительно улучшает свойства 
манипулятора по сравнению с адаптивной моделью контроля. Стабильность созданной системы проверено методом Ляпунова. 
Приведены результаты моделирования работы манипулятора. Ил. 8, библ. 15, табл. 3 (на английском языке; рефераты на 
английском, русском и литовском яз.). 
 
 
M. R. Soltanpour, S. E. Shafiei. Roboto manipuliatoriaus adaptyviosios kontrolės tyrimas dinamiškai segmentuojant darbinę 
erdvę // Elektronika ir elektrotechnika. – Kaunas: Technologija, 2010. – Nr. 5(101). – P. 73–78. 
 Atliktas roboto manipuliatoriaus adaptyviosios kontrolės tyrimas dinamiškai segmentuojant darbinę erdvę. Tai naujas 
manipuliatoriaus darbinės erdvės sekimo būdas, leidžiantis įveikti įveikiantis parametrų neapibrėžtis ir nestruktūrinius neaiškumus, 
tokius kaip trintis, pažeidimai, nesumodeliuota ir neaprašyta dinamika. Pasiūlyta kontrolės schema yra patikimesnė nei adaptyviosios 
kontrolės modelis. Sistemos su grįžtamuoju ryšiu stabilumas patikrintas Liapunovo metodu. Atliktas dviejų laisvės laipsnių roboto 
alkūnės modeliavimas. Il. 8, bibl. 15, lent. 3 (anglų kalba; santraukos anglų, rusų ir lietuvių k.). 
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