ELECTRONICS AND ELECTRICAL ENGINEERING

ISSN 1392 - 1215

2010. No. 6(102)

ELEKTRONIKA IR ELEKTROTECHNIKA

ELECTRONICS SCIENCES

ELEKTRONIKOS MOKSLAI

On Teaching Hardware/Software Co-design using FPGA

N. Bencheva
Telecommunications Department, Ruse University,

Studentska str. 8, 7017 Ruse, phone +359 82 888677, e-mail: nbencheva@ecs.ru.acad.bg

N. Kostadinov

Computing Department, Ruse University,

Studentska str. 8, 7017 Ruse, phone +359 82 888674, e-mail: nkostadynov@ecs.ru.acad.bg

Y. Ruseva
Telecommunications Department, Ruse University,

Studentska str. 8, 7017 Ruse, phone +359 82 888841, e-mail: iruseva@ecs.ru.acad.bg

Introduction

Computer and electrical engineers are involved in the
design of computer-based systems to address highly-
specialized and specific applications in computer,
aerospace, telecommunication, power-production,
manufacturing, defense and electronic industries. Modern
real-time embedded systems need to perform tasks that are
very demanding and require a great degree of
sophistication. They need to be able to handle a mixture of
data-intensive and control-oriented tasks. They need to
have architectural support for multi-tasking, multi-
threading, concurrency, polling, interrupts and preemption,
as well as user and supervisor modes of operation [1].

At Ruse University in the Faculty of Electrical
Engineering, Electronics and Automation the students are
offered several introductory courses that focus on
microcontroller-based systems, embedded programming
and Programmable Logic Design in the bachelor level.
Even at the master level, in the process of design,
configuration and programming of microprocessors it is
hard for the students to optimize the division of functions
between hardware and software. In order to improve the
students’ knowledge and skills in the process of embedded
systems design, the Hardware/Software Co-design is used
in the teaching process.

The complexities in designing embedded systems
motivate the need to use more efficient tools and design
methodologies. System Level Design is a methodology to
help address these complexities, and enable SoC designs.
There are three main system level design approaches:
hardware/software co-design, platform-based desigh and
component-based design [2, 3]. Hardware/Software
co-design (also referred to as system synthesis) is a top-
down approach. It starts with system behavior, and
generates the architecture from the behavior. It is

91

performed by gradually adding implementation details to
the design [2]. Generally, Hardware/Software co-design
consists of the following activities (Fig. 1): specification
and modeling, design and validation [4].

[Specification and modeling]—>

] ~

’ Task assignment }

y

’ Cost Estimation }

v

Hardware / Software
Partitioning

v
’ Co - Synthesis }

I

l Integration & Implementation I
W

Fig. 1. Activities of Hardware/Software co-design

Validation

Desing

Specification is the starting point of the co-design
process, where the designer determines the system’s
specification without defining the implementations.
Different languages are used to capture system
specifications. Modeling is the process of conceptualizing
and refining the specifications. Two approaches are used
for system specification, homogeneous modeling and
heterogeneous modeling [4, 5]. The goal of a specification
language is to describe the intended functionality of a
system non-ambiguously. A large number of specification
languages are currently being used in embedded system
design since there is no language that is the best for all
applications [2, 6]. Examples of formal languages are CSP,
LOTOS and SDL.

Tasks assignment is a process in which the system
specification is divided into a set of tasks/basic blocks that
define the system’s functionality. The next step is
estimation of the cost parameters for implementing the
system’s basic blocks (output of the task assignment) in
hardware or software [2]. Hardware/Software partitioning
divides the specification into two parts: a part that will be
implemented in hardware and a part that will be
implemented in software. Co-synthesis consists of several
design steps: communication synthesis, specification
refinement, hardware synthesis and software synthesis.
Validation is defined as a process of determining that the
design, at different levels of abstraction, is correct [2, 7].

Case study: traffic light controller (TLC)

The TLC controls the traffic of a crossroads of one
major road and one minor. The traffic on the major road is
stopped only when a signal from a sensor is received that
there is a car on the minor road.

As it is shown in Fig. 2, the TLC can be composed of
two subsystems working in parallel — Control block and
Timer module.

The CSP for the Timer is simple sequence of events:

Timer = ((tmr?start.long — tmr!timeout — Timer)

(tmr?start.short — tmr!timeout — Timer)))

Once the CSP description is defined, it can be
evaluated in the environment of a CSP model-checking
tool, for example Process Analysis Toolkit (PAT) [8].

For instance, executed by PAT assertion

#assert TLC() deadlockfree;

asks whether the process TLC is deadlock-free or not, and
the verification of assertion

#assert TLC() |= car.present — <> car.passed; |

validates that if there is a car on the secondary road, it will
eventually pass the crossroad.

TLC

tmrlstart(period)

tmr2timeout

Timer

)
car?present <
sensor Control
car?passed
—

lights!m(red, green, yellow)

lights!s(red, green, yellow)

Fig. 2. TLC Block diagram

One of the prominent formalisms for designing
concurrent systems at the specification level is the process
algebra CSP (Communicating Sequential Processes) [9].

The CSP description of the TLC from the system
view is:

TLC = (Control || Timer)

This states that the system TLC is defined as a
parallel composition of two processes — Control and Timer.

The Control process is also defined as a number of
sequential subprocesses, corresponding to its main working
states:

Control = (S0; S1; S2; S3; S4; Control)
SO = (lights.m.green — lights.s.red — car?present —
SKIP)

S1 = (tmr!start.short — lights.m.yellow —
lights.s.red_yellow — tmr?timeout — SKIP)

S2 = (tmr!start.long — lights.m.red — lights.s.green —

((tmr?timeout — SKIP)
(|
(car?passed — SKIP)))

S3 = (tmr!start.short — lights.m.red_yellow —
lights.s.yellow — tmr?timeout — SKIP)

S4 = (tmr!start.long — lights.m.green — lights.s.red —
tmr?timeout — SKIP)

92

The TLC we are currently developing uses Field
Programmable Gate Array (FPGA) device. This is because
in recent years FPGAs have been included in the electrical
engineering curriculum at Ruse University.

The reprogrammable nature of FPGA allows the
students to experiment different design solutions at the
stage of hardware/software partitioning. With the
hardware/software partitioning of the design system an
attempt for combining the advantages of microcontrollers
and FPGAs is done. In this project a microcontroller
PicoBlaze fulfils the functions of the Control block.
PicoBlaze is a compact 8-bits microcontroller with RISC
architecture, optimized for the families Spartan™-3,
Virtex™-Il u Virtex-11 Pro™ [10]. A part of the integrated
RAM (Block RAM) memory in FPGAs is used as a
program memory of the microcontroller. Every instruction
of the microcontroller is executed in two cycles as the
performance of the PicoBlaze varies from 44 to 100 MIPS
depending on the target FPGA family and speed grade.
Xilinx provides the PicoBlaze as a source-level VHDL file.

PicoBlaze doesn’t have a timer and that’s why the
module Timer of the project is hardware design using
FPGA resources.

The control program module of the PicoBlaze is
coded in accordance with the algorithm on Fig.3.
Assembling the program, a VHDL description of the ROM
memory is generated.

e ——

Lights.m := GREEN
Lights.s := RED

present ?

YES
v

Timer.start (SHORT)
Lights.m := YELLOW
Lights.s := RED_YELLOW

Timer.start (SHORT)
Lights.m := RED_YELLOW
Lights.s := YELLOW

=z A

<=

YES
v

Timer.start (LONG)
Lights.m := GREEN
Lights.s := RED

YES

v
Timer.start (LONG)
Lights.m := RED
Lights.s := GREEN

Timeout or
car passed ?

Fig. 3. TLC Flow chart

The project is developed using the Xilinx’s WebPack
ISE development environment [11]. As it is shown in the
hierarchy structure of the project (Fig. 4), the VHDL
modules are combined and presented at the highest level
with a schematic [12].

Hierarchy | R
ENSRTS
@ TLC_ctil. pem
=M€ »c3s500e-5t0320

=k [2]eff TLC [TLC 2ch)

- [Picoblaze_CPUN - Picoblaze_CPU - Structural (TLC_ctil vhd)

- [*tg| proceszor - kopem3 - low_level definition [kopem3.vhd)
prograrn_rom - TLC_ program - low_level_definition [progran_ron.vhd]
i | Timer1 - Timer - Behavioral [Timer.vhd)
o) TLC. uef [TLC uek)

Figl. 4. Project hierarchy

For the project implementation the Spartan 3E Starter
Kit, including FPGA circuit XC3S500E is used [13].

Can

Fig. 5. Spartan 3E Starter Kit

The occupied resources of the FPGA circuit from the
project are given in the next table:

Map report

Number of occupied Slices: 138 out of 4,656 2%
Number of bonded 10Bs: 9outof 232 3%
Number of Block RAMs: 1 out of 20 5%

93

Conclusions

This approach has been discussed with the students in
terms of its usefulness for obtaining practical skills and
structured thinking in the process of embedded systems
design using the Hardware/Software Co-design.

The reconfigurability of FPGA makes them ideal
devices for educational purposes as it allows the students
to iterate in their design tasks.

The Hardware/Software Co-design approach in
embedded systems design allows the students to implement
their knowledge obtained from various subjects and offers
more opportunities for course and diploma projects.

References

1. Nooshabadi S., Garside J., Teaching Embedded Systems
Design — An International Collaborative Project // 35th
ASEE/IEEE Frontiers in Education Conference. -
Indianapolis, 2005.

2. Shaout A., El-Mousa A., Mattar K. Specification and
Modeling of HW/SW CO-Design for Heterogeneous
Embedded Systems // Proceedings of the World Congress on
Engineering (WCE 2009), 2009. — Vol I.

3. Cai L. Estimation and Exploration Automation of System
Level Design. — Ph.D. Dissertation, Department of
Information and Computer Science. — University of
California, Irvine, 2004.

4. O’Nils M. Specification, Synthesis and Validation of
Hardware/Software Interfaces. — Doctoral thesis, Department
of Electronics. — Royal Institute of technology, Stockholm,
1999.

5. Carreras C., Lopez J., Lopez M., Delgado-cloos C.,
Martinez N., Sanchez L. A Co Design Methodology Based
on Formal Specification and High Level Estimation //
Proceedings of the 4th International Workshop on
Hardware/Software Co—Design, 1996. — P. 28-35

6. Niemann R. Hardware/software co-design for data flow
dominated embedded systems. — Boston: Kluwer Academic
Publishers, 1998.

7. Cesario W., Baghdadi A., Gauthier L., Lyonnard D.,
Nicolescu G., Paviot Y., Yoo S., Jerraya A., Diaz—Nava M.
Component—Based Design Approach for Multicore SoCs, in
Proceedings of 39th Design Automation Conference
(DACO02), 2002. — New Orleans, USA. — P. 789 — 794,

8. Sun J, Yang L., Dong J., Model Checking CSP Reuvisited:
Introducing a Process Analysis Toolkit // Proceedings of the
Third International Symposium on Leveraging Applications
of Formal Methods, Verification and Validation. — 2008. — P.
307-322.

9. Hoare R. Communicating Sequential
PrenticeHall, 1985.

10. PicoBlaze 8-bit Embedded Microcontroller User Guide. —
Xilinx, 2005.

Processes. -

11.Parnell, K., Mehta, N., Programmable Logic Design Quick 13.Xilinx CPLD and FPGA devices website. [Online:
Start Handbook. — USA: Xilinx, 2004. http://www.xilinx.com/products/devices.htm].

12.Perry, D., VHDL, 3rd ed. — USA: MacGraw-Hill Inc., 1998.

Received 2010 04 29

N. Bencheva, N. Kostadinov, Y. Ruseva. On Teaching Hardware/Software Co-design using FPGA // Electronics and Electrical
Engineering. — Kaunas: Technologija, 2010. — No. 6(102). — P. 91-94.

At Ruse University in the Faculty of Electrical Engineering, Electronics and Automation the students are offered several
introductory courses that focus on microcontroller-based systems, embedded programming and Programmable Logic Design. In the
process of design, configuration, and programming of microprocessors it is hard for the students to optimize the division of functions
between hardware and software. One of the reasons is the growing number of advanced programming techniques and design principles,
as well as sophisticated Integrated Development Environments. The courses have a fixed number of hours and the teacher cannot extend
the content of the lectures and the labs. In order to improve the students’ knowledge and skills in the process of embedded systems
design, the Hardware/Software Co-design is used in the teaching process. The paper considers one example of implementation of this
approach in the design of a traffic light controller. The project is based on the Intellectual Property Core of PicoBlaze microcontroller,
embedded within Xilinx Field Programmable Gate Array Families. For the project development Evaluation Board Spartan 3E including
XC3S500E FPGA device is used. 1ll. 5, bibl. 13 (in English; abstracts in English, Russian and Lithuanian).

H. Benuepa, H. Kocragunos, . PyceBa. OGyuenme Xxapayep-co)TyepHOT0 COBMECTHOTO NPOEKTHPOBAHHS HA OCHOBE
npumeHenust IIJIUC // dnexkrponnka u 3aexkrporexHuka. — Kaynac: Texnosorusi, 2010. — Ne 6(102). — C. 91-94.

B ynuBepcurere ropoza Pyce, Ha dakysibrere DNEKTPOTEXHUKHU, JICKTPOHUKH U aBTOMATHKHU CTYICHTaM MPEJIaraloTcsi HeCKOJIbKO
6a30BBIX KypCOB O MUKPOKOHTPOJICPHBIX CHCTEMAaX, BCTPOCHHOE POrPaMMHUPOBAHKE U IPOCKTUPOBAHUE HA OCHOBE IPOrPAMMHPYEMbIX
normdeckux uHTerpansHbix cxem (IIJIMC). B mpomecce mpoeKTHpOBaHMSA, KOHGUTYPHPOBAaHHS UM MPOrPaAMMHPOBAHUS
MHKPOIPOLIECCOPHBIX CUCTEM CTYACHTaM HEJErKO ONTHMH3UPOBATh pacrpeseiaeHne GyHKIMH MexIy MporpaMMHBIM M annapaTHbIM
obecrieyeHreM. OJHa W3 NPUYMH JUISL 3TOTO SBIAETCS HApacTAOIIMIl KOJIMYECTBO COBPEMEHHBIX METOJOB IMPOrPAMMHPOBAHUS U
HPHHIUIOB TPOSKTHPOBAHUS U CIOXHbIE HHTEIPUPOBAHHBIC Cpe/bl pa3paboTku. Kypchl HMEIOT GUKCHpaHHOE KOJMYECTBO y4eOHBIX
YacoB M IMpENoJaBaTeib HE MOXET PACTSHYTh COJACPKaHUE JCKIHUA M MPAKTHYECKHX 3aHATHH. UTOOBI yIydUINTh 3HAHHS U YMEHHS
CTYJICHTOB B IIPOIIECCE NIPOSKTUPOBAHNS BCTPAHMAEBBIX CHCTEM H3IIOJIb3YETCSl COBMECTHOE alapaTHO-IPOrpaMMHOE MPOEKTHPOBAHHE.
B cratbe mpuBeAeH MpHUMEp O MPUIIOKEHHH 3TOTO IMOJXOJa HPH MpOeKTHpoBaHHU cBerodopa. IIpoekt Gasupyercst Ha Intellectual
Property Core muxpokourposnepa PicoBlaze scrpoennsii 8 TINIUC ¢dupmer Xilinx. B mpomecce NpoeKTHPOBAHUS HCHOJB30BAH
Evaluation Board Spartan 3E sxmouatornuii TIJIMC XC3S500E. M. 5, 6u6n. 13 (Ha aHrIHACKOM si3bIKe; pedepaThl Ha aHTIIHMHACKOM,
PYCCKOM H JIUTOBCKOM $3.).

N. Bencheva, N. Kostadinov, Y. Ruseva. Techninés ir programinés jrangos bendro projektavimo mokymas taikant FPGA //
Elektronika ir elektrotechnika. — Kaunas: Technologija, 2010. — Nr. 6(102). — P. 91-94.

Rusés universiteto Elektros inZinerijos, elektronikos ir automatikos fakultete studentams sitilomi keli jvadiniai kursai. Juose daug
démesio skiriama mikrovaldikliams ir ju sistemoms, jterptinéms sistemoms bei programuojamosios logikos projektavimui. Studentams
projektuojant, konfigaruojant ir programuojant mikrovaldiklius sunku optimizuoti funkcijy padalijima tarp programinés ir techninés
jfrangos. Taip yra dél nuolat tobuléjandios pazangios programavimo technikos ir projektavimo principy skaiGiaus didéjimo. Studenty
Zinioms ir jgadziams pagerinti mokymo procese bei optimizuoti naudojamas jvadinis kursas ,,Techninés ir programinés jrangos
projektavimas“. Pateikiamas vienas pavyzdys — mikrovaldiklio, skirto Sviesoforams reguliuoti, kirimas. 1l. 5, bibl. 13 (angly kalba;
santraukos angly, rusy ir lietuviy k.).

94

http://www.xilinx.com/products/devices.htm�

	Electronics SCIENCES

