
63

 ELECTRONICS AND ELECTRICAL ENGINEERING
 ISSN 1392 – 1215 2010. No. 8(104)
 ELEKTRONIKA IR ELEKTROTECHNIKA

SYSTEM ENGINEERING, COMPUTER TECHNOLOGY
 T 120

SISTEMŲ INŽINERIJA, KOMPIUTERINĖS TECHNOLOGIJOS

Rootkit Detection Experiment within a Virtual Environment

J. Toldinas, D. Rudzika
Computer Department, Kaunas University of Technology,
Studentų 50, LT-51368, Kaunas, Lithuania, e-mails: eugenijus.toldinas@ktu.lt, darius.rudzika@stud.ktu.lt
V. Štuikys, G. Ziberkas
Software Engineering Department, Kaunas University of Technology,
Studentų 50, LT-51368, Kaunas, Lithuania, phone: +370 37 300399, e-mails: vytautas.stuikys@ktu.lt, ziber@soften.ktu.lt

Introduction

The expansion of Integrated Electronic Systems (IES)

[1] and Information Communication Technology (ICT)
resulted in a global virtualization, i.e., now we are moving
from a single work station to virtual machine and towards
cloud computing [2], where humans are working using
mobile devices [3].

Due to the battery energy issues [4-7], it is reasonable
to transfer energy-aggressive computations to virtual
environments. However, they are operating under
conditions that are constantly affected by threats and
danger of virus attacks. In such a case, we must take care
to the information security [8] and protection against the
attacks.

In general, computer viruses are products of special
software called malware. Malware, as described in [9], is
classified into four classes: type 0, type I, type II and type
III. According to statistics gathered from Microsoft’s
Malicious Software Removal Tool, a significant fraction of
the malware it encounters consists of stealth rootkits [10].
With respect to the mentioned classification, rootkits are
malware of type I and type II [9].

A rootkit is a small computer program that stealthily
invades an operating system (OS) or its kernel and takes
control of the computer [10]. Rootkits are receiving more
attention now as they are becoming serious security threats
to all classes of computing, including embedded devices,
desktop users, and server farm machines. As rootkits hide
malware activities, i.e. may run as hidden processes, gain
accesses as administrator to system resources and exploit
kernel vulnerabilities, it is difficult to detect them.

Basically, rootkits can be categorized into two
groups: user-level (aka application-level) rootkits and
kernel-level rootkits [11, 12]. If user-level rootkits are
quite easy to uncover, because they do not modify the OS
kernel, the second group poses a lot of problems because
the rootkits modify the OS kernel to provide the faked
information.

The aim of the paper is to present some framework to
investigate the behavior of the kernel-level rootkits and
describe the results of experiments we have carried out
aiming to model the processes of detection of such kind of
malware. The basic result we have identified is the rootkits
detection time dependencies upon the virtual machine
memory size.

Problem motivation

The typical structure of virtual environment consists
of hardware with host operating system (OS),
virtualization layer and series (pool) of virtual machines
(VM) with guest OS as it is presented in Fig. 1, a).

a)

b)
Fig. 1. Typical virtual architecture with firewall and antivirus
software (a) and extra tools to support security (b)

The benefits of virtualization are numerous and

include, for example, portability, manageability and
efficiency in using of computational resources. But the

64

benefits are not for free: we must consider and evaluate
security problems that arrive with virtualization. The
typical solution of the problems is the use of the firewall
and antivirus software installed in the host operating
system (see Fig.1, a)). Though the solution is simple
enough, however, it cannot ensure entirely the security of
virtual machines from the rootkit attacks (for details, see
[13]).

To protect virtual machines from that kind of virus, it
is possible to install the firewall and antivirus software in
each VM. However, such a solution is rather too complex
and lacks of flexibility in terms of efficiency and costs.
First, there are extra memory losses in each virtual
machine. And next, licenses are need for each virtual
application, i.e. in each guest OS. As virtual machines are
usually created dynamically the number of required
licenses should be anticipated for the maximum meaning
that not all of them will be in use.

A question that is often asked is: “Can a virtual
machine be used to compromise its host server?” Although
no known compromises exist today which could be used to
attack a host server from within a virtual machine, it is
conceivable that it could be accomplished through the
virtualization platform’s communication mechanisms
between host server and virtual machines used by the
platform’s guest OS enhancement tools [14, see page.98].

What we propose for the problem solution in this
paper is the use of VM memory’s scanning tools from
outside, e.g. from the host OS (see Fig. 1, b). The tools are
storied into the host computer and are operating under host
OS control. The tools perform scanning of VM memory
aiming to identify the existence of the virus.

Problem representation domain

Depending on the level of exploitation, a rootkit can
operate in the user space and the kernel space. Kernel
mode rootkits are more detrimental than user mode rootkits
as they can obtain unrestricted accesses at the root
privilege level and thus can freely manipulate any
component of the system via the compromised OS.

Fig. 2. Problem representation using feature diagram notation

When a virtual machine is running it is possible
through the use of existing tools (e.g., memory dump to
file) to gather information about memory’s (e.g., process
list, interrupt description table, kernel mode, user mode,
etc.) from both inside and outside of the virtual machine
OS. Fig. 2 explains the features of the problem and
solution domains. Note that black circles denote obligatory
features that were taken into account in our investigation.
White circles denote optional features that can be analyzed
in other contexts.

Rootkits detection may be made by the memory scan
for known anomalies in the process list, in the kernel
mode, in the orphan threads list, in the user mode and in
the interrupt descriptor table (IDT).

A virtual machine in the host computer is presented
as a continuous file, where the guest OS structure and all
information are saved. We provide a brief overview of
tools used as follows.

- Volatility framework – the Volatility Framework
is a completely open collection of tools,
implemented in Python under the GNU (General
Public License), for the extraction of digital
artifacts from volatile memory (RAM) samples
(www.volatilesystems.com/default/volatility).
The extraction techniques are performed
completely independent of the system being
investigated but offer unprecedented visibility
into the runtime state of the system.

- Volatility plug-ins – list of the published plug-ins
for the Volatility framework.

- Python – is an object-oriented, interpreted, and
interactive programming language.

- MinGW – a port of the GNU Compiler Collection
(GCC), and GNU Binutils, for use in the
development of native Microsoft Windows
applications. In our case the tool was used for
developing Volatility plug-in.

- Flypaper.exe – HBGary Flypaper is loaded as a
device driver and it blocks all attempts to exit a
process, end a thread, or delete the memory. All
components used by the malware remain as a
resident in the process list and stay in the physical
memory. The entire execution chain is reported so
that you can follow each step. HBGary Flypaper
is free for non-commercial use.

- VMware Workstation v6.5 and v7 – desktop
oriented virtualization platform.

Strategy of the methodology for the given platform

The proposed methodology contains three stages:

initialization, snapshot and analysis. The first stage needs
both the guest OS and host OS initial initialization. Each
guest OS needs to be initialized with:

- Rootkit for simulation process (we use FU - open
source rootkit with well known code and behavior
(www.securityfocus.com/columnists/358/1).

- Network services (such as, tfpd, ftpd, syslogd) for
communication with host OS.

Host OS needs to be initialized with: Python runtime
v2.6 serves to enable volatility framework run because it is

https://www.volatilesystems.com/default/volatility�

65

entirely written in that language; Volatility framework;
Volatility framework plug-ins; Microsoft ® PowerShell.

The second stage serves for taking guest OS

memory’s information snapshots periodically and saving
that information into the file VMEM (meaning ‘virtual
memory’ for short) outside guest OS for the next stage.
Actions of the snapshot stage are detailed in Fig.3.

Fig. 3. Algorithm that models ROOTKIT detection functionality
within the VM memory’s analyzing tools (see Fig.1. b))

It is important to state that we need to freeze the

processes within the guest OS for taking the snapshot. At
the end of snapshot we record the elapsed time and, than
the guest OS processes are released.

The snapshot what was saved into the file identified
as VMEM is used at the last stage: analysis for rootkit
detection. Fig. 4 presents main processes of the last stage.

Fig. 4. Analyzing processes for communication and elapsed time
recording

We applied five scans for rootkit detection and every

scan elapsed time was recorded. The task of mentioned
measures was to evaluate and detect how match time takes
every scan period and how scan times depends upon guest
OS memory’s size.

Scripts were written for each scan processes and scan
times recording. For all collected snapshots volatility
framework was run from Microsoft ® PowerShell.

The number of command lines used for getting
experiment results is shown in Table 1.

Table 1. Scripts for snapshot scanning

Analyze purpose Script

Process list scan python volatility.py pslist -f '$FULL_PATH_TO_VM_MEMORY_IMAGE.VMEM'

User mode hooks scan python volatility.py usermode_hooks -f '$FULL_PATH_TO_VM_MEMORY_IMAGE.VMEM' –d
C:\temp

Orphan threads scan python volatility.py orphan_threads -f '$FULL_PATH_TO_VM_MEMORY_IMAGE.VMEM'

Kernel hooks scan python volatility.py kernel_hooks -f '$FULL_PATH_TO_VM_MEMORY_IMAGE.VMEM' –d
C:\temp

IDT entries scan python volatility.py idt_entries -f '$FULL_PATH_TO_VM_MEMORY_IMAGE.VMEM'

66

 Experiments

The aim of our experiment was to collect
experimental data of real VM and to evaluate the proposed
methodology by recording the scan time’s dependencies
upon the VM memory size.

In our experiments, the host machine is Intel P9400
running host Windows 7 32-bit OS. The VM hypervisor is
VMware Workstation v6.5.

The pool of the guest OS was implemented using
Windows XP SP3 32-bit with the different sizes of random
access memory (RAM). The first VM RAM size was
128MB, the second 256 MB, and the next 384MB and so
on till the last 2048MB.

In this section we present the results of using our
verification function for kernel rootkits detection and give
a brief evaluation of verification performance.

The experiment results for each increment of the
guest OS memory size, i.e. VM, are presented in Table 2.

Table 2. Experiment result details

VM memory
size,
MB

Snapshot
time,

s

Orphan
threads

scan,
s

Process list
scan,

s

Kernel
hooks scan,

s

User mode
hooks scan,

s

IDT entries
scan,

s

Total time,
s

128 1 3,88 0,14 2,65 127,10 0,77 135,55
256 1 1,12 0,14 2,59 119,72 0,33 124,91
384 1 4,63 0,14 2,57 116,88 0,36 125,59
512 2 6,17 0,14 2,58 116,21 0,42 127,52
640 2 6,70 0,16 2,56 100,38 0,49 112,28
768 2 7,79 0,14 2,58 109,60 0,38 122,50
896 2 8,79 0,14 2,53 108,99 0,50 122,96
1024 19 22,34 0,14 2,56 101,38 0,54 145,97
1152 22 25,93 0,14 2,60 97,35 0,79 148,80
1280 26 27,86 0,14 2,59 108,73 0,56 165,88
1408 26 28,58 0,14 2,53 113,36 0,52 171,14
1536 33 30,72 0,14 2,60 116,85 0,53 183,83
1664 27 33,05 0,14 2,58 121,85 0,56 185,19
1792 33 39,82 0,14 2,55 108,97 0,48 184,96
1920 44 43,66 0,15 2,59 113,93 0,55 204,87
2048 55 46,58 0,14 2,58 117,96 0,40 222,67

In Fig. 5, we present a graphical relationship between

the VM memory size and the total time consumed for the
snapshot and all types of the VM memory scans.

Summary of VM memory's snapshot and scan
time for rootkit detection

0
25
50
75

100
125
150
175
200
225
250

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

11
52

12
80

14
08

15
36

16
64

17
92

19
20

20
48

VM memory size MB

To
ta

l t
im

e
s

Fig. 5. Total analyze time in VM with various memory sizes

We have also identified that there is a difference in

time when we are repeating the scanning process, for
example, for the orphan threads scan and for the user mode
hooks scan.

As it is depicted in Fig. 6, the second orphan threads
scan requires much less time then the first We explain the
phenomena by the memory data cashing effect.

Orphan threads scan

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

40,00

45,00

50,00

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

11
52

12
80

14
08

15
36

16
64

17
92

19
20

20
48

VM memory size MB

Sc
an

 ti
m

e
s

First run Second run

Fig. 6. Two runs of the orphan threads scan

As it is depicted in Fig. 7, the second user mode

hooks scan requires also less time then the first.

67

User mode hooks scan

0,00

20,00

40,00

60,00

80,00

100,00

120,00

140,00

12
8

38
4

64
0

89
6

11
52

14
08

16
64

19
20

VM memory size MB

Sc
an

 ti
m

e
s

First run Second run

Fig. 7. Two runs of the user mode hooks scan

Comments on the modelling results given in Table 2

are as follows. Process list, Kernel hooks and IDT entries
scans are approximately constant because they are
independent upon VM memory size (they depend on guest
OS initial configuration only). Small discrepancies are due
to the measurement inaccuracy.

User mode hooks scan varies depending on the VM
workload. In the rest scans times vary depending on the
VM memory size, but there is a noticeable jump when the
VM memory size reaches 1024 MB. The jump is due to the
hypervisor’s specificity: when the VM memory size is less
than 1024 MB VM are still under operation, and when the
size of VM is more or equal to 1024 MB VM are
interrupted until the end of the scans.

Conclusions

Our experiment shows that the VM memory size is

influential on the total elapsed time for rootkits detection in
the following manner: 1) with the increase of memory size
the snap shot time grows largely but there is no evident
relationship (e.g., if the size of memory changes by factor
2-3 the time increases by factor 15-20); 2) the memory size
is most influential on scanning time of Orphan threads,
again there is no clearly identifiable expression of the
relationship; 3) Process list and Kernel hooks scan times
are practically independent upon the memory size of
virtual machines; 4) user mode hooks and IDT scan times
not much depend on the memory size, though one can
observe some discrepancies in time values. Our experiment
results also show that the difference between the minimal
amount of time and the maximal amount of time can be
expressed by factor 2.

References

1. Keras E., Balaišis P., Dzingus N., Eidukas D., Valinevičius

A. Electronic Plant Leaf Testing System // Electronics and
Electrical Engineering. – Kaunas: Technologija, 2008. – No.
8(88). – P. 99–102.

2. Pokharel M., Park J. Cloud computing: future solution for
e–governance // Proc. of the 3rd International Conference on
Theory and Practice of Electronic Governance. – Bogota,
Columbia, 2009. – P. 409–410.

3. Batkauskas V., Kajackas A. Quality of Heterogeneous
Mobile Data Services: Capabilities and End–user
Achievements // Electronics and Electrical Engineering. –
Kaunas: Technologija, 2010. – No. 5(101). – P. 43–46.

4. Tiliute D. Battery Management in Wireless Sensor Networks
// Electronics and Electrical Engineering. – Kaunas:
Technologija, 2007. – No. 4(76). – P. 9–12.

5. Damaševičius R., Štuikys V., Toldinas J. Embedded
Program Specialization for Multiple Criteria Trade–offs //
Electronics and Electrical Engineering. Kaunas:
Technologija, 2008. – No. 8(88). – P. 9–14.

6. Toldinas J., Štuikys V., Damaševičius R., Ziberkas G.
Application–Level Energy Consumption in Communication
Models for Handhelds // Electronics and Electrical
Engineering. – Kaunas: Technologija, 2009. – No. 6(94). – P.
73–76.

7. Miedzinski B., Rutecki K., Habrych M. Autonomous
Monitoring System of Environment Conditions // Electronics
and Electrical Engineering. – Kaunas: Technologija, 2010. –
No. 5(101). – P. 63–66.

8. Toldinas J., Štuikys V., Ziberkas G., Naunikas D. Power
Awareness Experiment for Crypto Service–Based Algorithms
// Electronics and Electrical Engineering. – Kaunas:
Technologija, 2010. – No. 5(101). – P. 57–62.

9. Rutkowska J. Introducing Stealth Malware Taxonomy //
COSEINC Advanced Malware Labs, Version 1.01, 2006.

10. Bowman M., Brown H., Pitt P. An Undergraduate Rootkit
Research Project: How Available? How Hard? How
Dangerous? // Proc. of Information Security Curriculum
Development Conference. – Kennesaw, Georgia, USA, 2007.
– P. 43–48.

11. Jones S., Arpaci–Dusseau A., Arpaci–Dusseau R. VMM–
based Hidden Process Detection and Identification using
Lycosid // Proc. of VEE ’08. – Seattle, Washington, USA,
2008. – P. 91–100.

12. Quinh N., Takefuji Y. Towards a Tamper–Resistant Kernel
Rootkit Detector // Proc. of SAC’07. – Seoul, Korea, 2007. –
P. 276–283.

13. Vasisht V., Lee H. SHARK: Architectural Support for
Autonomic Protection against Stealth by Rootkit Exploits //
IEEE, 2008. – P. 106–116.

14. Marshall D., Reynolds W., McCrory D. VMware® and
Microsoft® Platforms in the Virtual Data Center // Auerbach
Publications, Taylor & Francis Group, 2006.

Received 2010 03 05

J. Toldinas, D. Rudzika, V. Štuikys, G. Ziberkas. Rootkit Detection Experiment within a Virtual Environment // Electronics and
Electrical Engineering. – Kaunas: Technologija, 2010. – No. 8(104). – P. 63–68.

In the context of virtual environments, the security problems are highly important. The paper presents some results of experiments
we have carried out within the real virtual machine environment through modeling aiming to identify dependencies between the virus,
called Rootkits, detection time and the virtual machine memory size. Rootkits exploit kernel vulnerabilities and gain privileges
(popularity) within any system, virtual or not. The basic result of the paper is as follows: 1) the Rootkits detection methodology for the
virtual environment when the memory size of a virtual machine is changing; 2) dependences between the virtual machine memory size
and Rootkit detection time. Ill. 7, bibl. 14, tabl. 2 (in English; abstracts in English, Russian and Lithuanian).

68

Е. Толдинас, Д. Рудзика, В. Штуйкис, Г. Зиберкас. Эксперимент определения Rootkit в виртуальной среде //
Электроника и электротехника. – Каунас: Технология, 2010. – № 8(104). – C. 63–68.

В среде виртуальных машин очень важна проблема безопасности. В статье представлены некоторые результаты
эксперимента, используя моделирование, проведенное нами в конкретной среде виртуальных машин, с целью определения
зависимости времени обнаружения вирусов типа Rootkits от размера оперативной памяти виртуальной машины. Данные
вирусы поражают функциональные свойства ядра операционной системы, широко распостранены в различных операционных
системах, как в стационарных, так и в виртуальных. Основные результаты: 1) предложена методика обнаружения вирусов типа
Rootkits в среде виртуальных машин, при измененяющемся объеме оперативной памяти; 2) установлена связь между временем
обнаружения вируса и размером памяти виртуальных машин. Ил. 7, библ. 14, табл. 2 (на английском языке; рефераты на
английском, русском и литовском яз.).

J. Toldinas, D. Rudzika, V. Štuikys, G. Ziberkas. Rootkit virusų aptikimo eksperimentas virtualioje aplinkoje // Elektronika ir
elektrotechnika. – Kaunas: Technologija, 2010. – Nr. 8(104). – P. 63–68.

Virtualių mašinų aplinkoje labai didelę reikšmę turi saugumas. Šiame straipsnyje pateikiami kai kurie eksperimentiniai rezultatai,
gauti konkrečioje virtualių mašinų aplinkoje modeliavimo būdu siekiant nustatyti virusų, žinomų Rootkits vardu, aptikimo trukmę
priklausomai nuo virtualios mašinos atminties dydžio. Šie virusai klastingai pažeidžia operacinės sistemos branduolio funkcionalumą,
yra labai paplitę bet kurioje sistemoje, virtualioje arba stacionarioje. Pagrindinis straipsnio rezultatas toks: 1) pasiūlyta virusų Rootkits
aptikimo metodika virtualių mašinų aplinkoje, kai keičiasi virtualių mašinų operatyviosios atminties dydis; 2) nustatytos viruso aptikimo
laiko priklausomybės nuo virtualios mašinos atminties dydžio. Il. 7, bibl. 14, lent. 2 (anglų kalba; santraukos anglų, rusų ir lietuvių k.).

	SYSTEM ENGINEERING, COMPUTER TECHNOLOGY
	T 120

