

13

 ELECTRONICS AND ELECTRICAL ENGINEERING
 ISSN 1392 – 1215 2010. No. 8(104)
 ELEKTRONIKA IR ELEKTROTECHNIKA

AUTOMATION, ROBOTICS
 T 125

AUTOMATIZAVIMAS, ROBOTECHNIKA

Real-time Acquisition of the Distributed Data by using an Intelligent
System

N. C. Gaitan
Department of Computers, Faculty of Electrical Engineering and Computer Science,
 „Ştefan Cel Mare” University of Suceava, Romania, str. Universitatii nr.13, e-mail: cristinag@eed.usv.ro

Introduction

This paper introduces the hardware and software
architecture of an intelligent system, specific to real time
acquisition of the distributed data.

The intelligent system is represented under the form
of an embedded device, accomplished by means of a
STR710FZ2 microcontroller and an RTX real time kernel.

A real time system signifies a system whose
correctness does depend upon both a logical result of
computing, and upon a moment when that result was
produced. An equivalent definition is focusing over the
behavior of the system, which might be analyzed outdoor.
This fact might be described by means of the service
concept: the service(s) provided by a system is (are)
represented by its behavior noticed by the user(s) [1, 2],
meaning by the specific environment. Basing upon the
previous mention, a real time system service has to meet
both the temporal and functional (logical) requirements; in
this way, the system has to be seen as “erroneous”. This
fact has carried out the following definitions [3]:

1. The real time service signifies that service
necessary to be provided in certain time ranges,
decided by the environment.

2. A real time service represents a system, which
provides at least one real time service. One might
mention that this definition also emphasizes that
different services (parts) of the same system can
be a subject to various temporal necessities.

The complex applications need more computing resources,
which means that they will be much easier to achieve if
using some processors. The critical applications offer an
increase for more rigorous necessities, which might be
carried out only by solving adequately the mechanisms of
tolerance to fault (error) [4, 5]. The tolerance to fault
(error) needs the redundancy, which can be achieved by
means of using additional processors.

A real time system has severe time constraints, when
a time error might cause human, economic or ecological

disasters. A real time system has easy time constraints
when the time errors can be treated by a certain extension.
A computerized real time system signifies that system
whose behavior is established by the dynamics of an
application. In this way, a real time application [6, 7]
consists of two connected parts: a computerized system of
real time controlling and the controlled process.
Concerning the real time systems, the word task is the most
used as unit, so as to represent the concurrent activities of
the logical architecture [8, 9]. The physical parallelism of
the hardware architecture and the logical parallelism of
application requirements signify most often the basis for
distributing an application towards competing tasks.

The hardware architecture of an intelligent master
towards the acquisition of distributed data

The hardware architecture of an intelligent master has

offered the necessary resources, so as to implement the real
time application, also known as Intelligent Master. The
microcontroller has to assure an increased computing
efficiency [10], but of low price. For the time being, the
ARM7 TDMI and Cortex M3 architectures offer enough
resources for such applications. The estimated memory is
of 128KB of flash memory and of minimum 64KB of
SRAM, due to the high number of communication buffers.

In order to accomplish a history of inputs specific to
objects dictionary and to set up the communication
protocols and an acquisition cycle, the system was
endowed with a SD or MMC non-volatile memory type.

Considering the time chart, a microcontroller with an
embedded watch is chosen. For the PC communication,
three possibilities were foreseen, such as:

- The communication with the serial port and
RS232 line standard;

- The communication using USB port;
- The communication using an Ethernet connection

of 10/100 Mb/s.

14

COM 1 COM 2 CAN 1 CAN 2

Memorie
FLASH

Memorie
RAM

Ethernet USB Clock SD Card

PC (optional)

PC (optional)

Fig. 1. The interface of digital systems towards the environment

In order to implement the protocols imposed by the
defined requirements, the architecture was fitted with the
following:

- Serial ports for ASCII, M-Bus and Modbus
RTU/ASCII protocols and communication by
radio modem (the RS232 and RS485 line
standards will be used);

- Ethernet ports, which can ensure the Modbus
TCP/IP protocol;

- CAN ports, which allow the implementation of
one or more networks, based upon CANOpen
protocol.

Taking into account the reliableness and wiring space
aspects, it is preferred that resources should be integrated
on the microcontroller’s chip, as many as possible. This
will represent an essential criterion for choosing the
microcontroller. The challenge for real time standards
consists of choosing between real time kernels, which are
standardized by adopting the Unix standard interface, and
the non-Unix real time kernels, modified in order to offer
specific facilities to real time.

A set of application programming interfaces (API),
which extend the Unix interface to real time, were
proposed as Posix 1003.1b standard. These interfaces,
which allow the portability of applications in real time
requirements, are represented by:

- The functions of timer interface, so as to set up
and read the internal timers of high resolution;

- The scheduling functions, which allow the taking
over an setting up the scheduling parameters.
Three politics are defined: SCHED_FIFO,
meaning a preemptive scheduling, based upon
priorities, SCHED_RR, meaning a preemptive

scheduling, based upon quantum priorities
(round-robin) and SCHED_OTHER, meaning a
scheduling defined by implementation;

- The functions of files, which allow the creation
and access to files with determinist performances;

- Efficient synchronization primitives, such as
semaphores, and facilities to synchronous and
asynchronous transmission of messages;

- Functions of asynchronous notification of events
and signals in real time, placed in queues;

- Functions of locking a process memory and of
facilitating the mapping of the shared memory;

- Efficient functions, which accomplish the
synchronous and asynchronous I/O operations.

The real time operating system

A real time operating system should provide

facilities, so as to accomplish three main essential
requirements to real time applications[11][12][13]:

- Ensuring a response from the computers system;
- The promptitude of response, once this has been

decided;
- The security of application code.
A real time operating system has to be able to take

into consideration the periodical tasks, with periods and
terms established, as well as the discontinuous tasks, of
unknown occurrence data, but of fixed terms. These
properties might be reached by an approach of levels,
based upon the real time planning of tasks and of real time
kernel.

The evaluation of a real time operating system has
been mainly based upon the real time abilities, such as:

15

- The promptness of the answer given by the
computer system;

- The predictability of execution times, specific to
a call to the kernel;

- Disposing of scheduling politics;
- Providing the assistance, so as to debug the

program in real time context, when the
application runs in the field;

- Storing the performances for future case studies.
Two significant aspects will be developed:

- The promptness of an answer. The promptness of
an answer specific to a real time kernel can be
evaluated by two parameters, such as the delay of
interruption and the delay of response. The delay
of interruption signifies the delay occurred
between the arrival of an event to the application
and the moment when this event is stored in the
computer’s memory. The delay of response is that
delay occurred between the arrival of an event to
the application and the fastness by which the
event is processed by that task.

- The predictability of the execution times, specific
to a call to the kernel. A real time kernel includes
a set of methods, in order to reduce the delays,
meaning: the reentrance, the preemption, the
scheduling of priorities and the succession of
priority. As consequence, the execution time of
each call to the kernel can be evaluated when this
is executed for the task having the highest
priority. This time represents the sum of the
properly call and the delay given by the highest
critical section of the kernel.

The real time kernel

RTX real time kernel has allowed a flexible

scheduling of the system’s resources, as the CPU and the
memory, thus offering some communication means
between the tasks[14–16].

The programs written for the RTX real time kernel
use standard C builders, and they are not compiled by
means of RealView Compilation Tools, provided by
MDK-ARM Development Kit.

In addition to C language, one might declare very
easily the functions of the tasks, and also the writing of
real time programs, which only need the including of a
special header file into the program and the connection
with the RTX library.

RTX provides the functionality, as basic point of
starting and stopping the competing tasks (processes). This
also offers additional functions for the communications
among processes. Some communication functions can be
used, in order to synchronize the different tasks, of
managing the common resources (as the peripherals and
memory parts), and also of transmitting complete messages
among tasks.

The basic functions might be used, so as to start the
real time executive, to start and to stop the tasks, or to pass
the control from one task to another (round-robin
scheduling). Certain execution priorities might also be
assigned towards the tasks. When more than one task
exists in READY list, the RTX kernel uses the execution
priorities, so that the next task should be executed
(scheduling by suspension).

The RTX kernel is fitted with drivers specific to
communication peripherals, as follows:

- CAN communication;
- Serial communication;
- USB communication.

The software architecture of an intelligent master

The proposed software architecture is structured in

tasks, as illustrated in Fig. 2.
The proposed tasks are grouped in three categories:
- Tasks for communications;
- Tasks for implementing certain protocols;
- Tasks for managing the objects dictionary, the

communication with the PC and working with
history and configuration files.

The CANOpen communication task uses two types of
objects:

- PDO (Process Data Object) – objects specific to
real time data exchange, at the level of processes;

- SDO (Service Data Object) – objects specific to
configuration and service, at the level of local
nodes.

For PDO objects, some communication methods are
used, of type producer-consumer and master-slave, while
for SDO objects, the client-server model is used.

CAN communication task implements a driver for the
CAN communication, driver which hides the particularities
of CAN controller on the microcontroller[17, 18]. This
receives all network messages and will transmit them to
the task which implements the CANOpen Master protocol,
if there are messages managed by the network, or will send
them to the task which manages the objects dictionary, if
there are messages of SDO or PDO types.

The serial communication task implements a driver
for serial communication. The serial driver uses two round
buffers, one of transmission and one of reception. The
transmission and reception of messages will be
accomplished depending upon the serial communication
protocol, active at that moment:

- The MODBUS protocol, with RTU and ASCII
transmission modes;

- The M-Bus protocol, used for energetic
consumption supervision;

- The ASCII protocols.
The structure of the acquisition cycle, executed by the
communication tasks, excepting CANOpen, is illustrated
in Fig. 3.

16

Fig. 2. The main diagram of an intelligent system towards real time acquisition of the distributed data

Fig. 3. The structure of the acquisition cycle, executed by the
communication tasks, excepting CANOpen

The USB communication task implements a driver
for the USB communication. This driver carries out the
communication with the PC, by means of USB device.

The Ethernet communication task implements a
driver for the Ethernet communication. The driver
accomplishes the communication with the PC, basing upon
TCP/IP protocol (stack), where efficiencies are measured
by taking into account the data flow, when high blocks of
data are transmitted.

 CANOpen disposes of a network management
(NMT), in order to monitor and control all the devices
connected to the network. Each CANOpen device
implements a state machine, which might be controlled by
the NMT Master, through the help of the bus. This “states
machine” represents the central part of the NMT Slave
functioning. The NMT Master is the only device able to
influence other states machines of the network, and it is
allowed to only one NMT Master on network. One might
notice that an available NMT Master is part of the network
resources and is able to coexist with a NMT Slave, on the
same physical device.

In contradistinction to CANOpen protocol, the
MODBUS RTU/ASCII protocols, the ASCII protocol and
M-BUS protocol do not specify separately the behavior of

the Master device. As consequence, these tasks were
conceived only for the configuration and managing the
tasks that accomplish a properly communication. The
assignments of these tasks are the following:

- Defining the structure of the acquisition cycle,
thus emphasizing the quanta for PDOs and SDOs,
respectively;

- Defining the size of the acquisition quantum and
their numbering;

- Attaching to each PDO quantum a specific
protocol command, thus indicating if a response is
waited or not for that command;

- Defining, if such be the case, certain series of
successive quanta for multiple commands.

These tasks are accomplished by means of two ways:
- According to a structure stored into a flash

memory or under the form of a file stored either
into a flash memory or external device (SD Card,
MMC Card, etc.);

- Upon basis of certain commands received from
the host computer, at the stage of initializing the
intelligent Master. The protocol will not be
operational in the situation when the work
configuration is not available (local or of the host
computer).

The tasks can meet supervision functions, such as:
- Counting the messages properly transmitted, and

received, respectively;
- Counting the messages with errors at the

transmission and reception;
- Counting the timeouts;
- Metering the functioning time, maintaining the

records of inputs and outputs of stations on the
network.

These functions can generate LOG files, locally
stored or can send command messages to the host

RTL – Executiv de timp
real

TASK
COMUNICA ?IE CAN

TASK
COMUNICA ?IE

SERIAL?
TASK

COMUNICA ?IE USB
TASK

COMUNICA ?IE
ETHERNET

TASK STIV?
CANOPEN MASTER

TASK MODBUS
RTU / ASCII

TASK PROTOCOL
ASCII

TASK M - BUS

TASK PENTRU ACTUALIZ .
?I GEST . DICTIONARULUI

DE OBIECTE
TASK PENTRU

COMUNICA?IA CU
PC - ul TASK GESTIUNEA

FI?IERELOR
TASK PENTRU DEPANARE

?I ÎNTRE?INEREA
APLICA?IEI

DRIVER
CAN DRIVER

SERIAL? DRIVER
USB DRIVER

ETHERNET

TASK - uri de comunica?ie

T A S K - u r i
d e

i m p l e m e n t a r e

17

computer.
These tasks, similar to the task corresponding to

CANOpen protocol, will not interpret the EDS files, since
this task needs increased resources and might be easily to
implement on the host computer.

Taking into consideration the Intelligent Master, the
Dictionary of objects consists of messages of variable
length, specific to each protocol. In order to keep these
messages, two round buffers or proper size are used, one
for the transmission towards the host computer and one
towards the reception. The operations over the reception
buffer are accomplished by:

- The task specific to the communication with the
PC, which submits the messages into the
dictionary (buffer);

- The task specific to updating and managing the
Dictionary of objects, which takes over the data
messages and send them to serial communication
tasks, either CAN or Ethernet;

- The control messages, which are sent towards the
implementation tasks.

The task used for the communication with the Pc
manages two round buffers, one for the transmission and
one for the reception, whose size depends upon the
communication type, chosen among the RS232 serial
communication, USB or Ethernet.

If there is a support for files, the task used for files
management will manage the following types of files:

- Files that include the configuration of the
acquisition cycle;

- Files that include the logs;
- Files that accomplish a history of data messages

on the Dictionary of objects (selectively for each
protocol or without selection).

The task used for debugging and maintenance of the
application will carry out the following basic functions:

- Manages the counting indicators used by the other
tasks, accomplishing log type files, or
transmitting control messages towards the task of
communication with the host computer;

- Takes decisions as concerns the stopping or
starting of a protocol, depending upon the errors
number;

- Manages the messages of spy type, useful to
application debugging.

Conclusions

A main objective of this paper consists in
emphasizing the structure of an Intelligent Master device,
which is real time operational and depending upon
variants, offers a subset or a complete set of facilities,
meaning:

- Will be external to the host computer;
- Will allow the connection to host computer, by

using RS232, USB or Ethernet interfaces;
- Will implement the following network protocols:

MODBUS TCP/IP Master and Slave, MODBUS
RTU and ASCII MASTER, CANOpen MASTER,

M-Bus MASTER or ASCII MASTER;
- Will allow the connection of radio modems:

XTREAM of 2,4 GHz, GSM or Sony – Ericson
modem;

- Will implement the data logger function (will
create and store the history);

- Will implement: the TCP/IP stack and sockets,
SLIP and PPP protocols, protocols for WEB sites
(HTTP), protocols used to e-mails, protocols used
to files transferring or the protocols used for the
radio modems;

- Will implement the communication component
for the connection with the OPC DA 2.05 or OPC
XML-DA servers.

The Intelligent Masters can be:
- Local, next to the host computer, or
- Placed away, if they implement the TCP/IP stack

and other protocols at the application level
(HTTP, WEB servers, MODBUS TCP/IP, FTP or
e-mail protocols, etc.).

Acknowledgements

This paper was supported by the project "Computer

system for controlling and checking the authenticity of
product - ATPROD" - Contract no. 12082/2008 , project
co-funded by 2007-2013 PNCDI Program.

References

1. Dertouzos M. L., Mok A. K. Multiprocessor on–line

scheduling of hard–real–time tasks // IEEE Transactions on
Software Engineering, 1989. – No. 12(15). – P. 1497–1506.

2. Gaitan A. M., Popa V., Gaitan V. G., Hrebenciuc F. A.
Approach on Applications of Random High Data Flows
Concerning the Architecture of Computer Networks //
Electronics and Electrical Engineering. – Kaunas:
Technologija, 2010. – No. 7(103). – P. 61–66.

3. Eidukas D. Modeling of Level of Defects in Electronics
Systems // Electronics and Electrical Engineering. – Kaunas:
Technologija, 2010. – No. 3(99). – P. 13–16.

4. Lin Xu, Yang Han, Jun-min Pan, Chen Chen, Gang Yao,
Li–Dan Zhou. Selective Compensation Strategies for the 3-
Phase Cascaded Multilevel Active Power Filter using ANF-
based Sequence Decoupling Scheme // Electronics and
Electrical Engineering. – Kaunas: Technologija, 2010. – No.
2(98). – P. 15–20.

5. Topaloglu N., Gürdal O. A Highly Interactive PC based
Simulator Tool for Teaching Microprocessor Architecture
and Assembly Language Programming // Electronics and
Electrical Engineering. – Kaunas: Technologija, 2010. – No.
2(98). – P. 53–58.

6. Gaitan V. G., Ungurean I., Gaitan N. C., Popa V. Keeping
industrial systems and communication up–to–date using
interoperable communicating components and electronic data
sheet // IEEE Eurocon 2009. – Saint Petersburg, Rusia, 2009.
– P. 389–396.

7. Gaitan V., Popa V., Gaitan N. C., Danila M. G. MCPI
Application – A scalable Human – Computer Interaction
(HCI) // Proceedings of ED–MEDIA 2008 World Conference
on Educational Multimedia, Hypermedia &
Telecommunications. – Vienna, Austria, 2008. – P. 1522–
1527.

18

8. Schwan K., Zhou H. Dinamic scheduling of hard real–time
tasks and real–time threads // IEEE Transactions on Software
Engineering, 1992. – No. 8(18). – P. 736–748.

9. Zhao W., Ramamritham K., Stankovic J. A. Preemptive
scheduling under time and resource constraints // IEEE
Transactions on Computers, 1987. – No. 8(36). – P. 949–960.

10. Pahtma R., Preden J., Agar R., Pikk P. Utilization of
Received Signal Strength Indication by Embedded Nodes //
Electronics and Electrical Engineering. – Kaunas:
Technologija, 2009. – No. 5(93). – P. 39–42.

11. Stankovic J. A. Misconceptions about Real–Time
Computing: A Serious Problem for Next–Generation Systems
// IEEE Computer, 1988. – No. 10(21). – P. 10–19.

12. Stankovic J. A., Ramamritham K. IEEE Tutorial: Hard
Real–Time Systems // IEEE Computer Society Press,
Washington, USA, 1988.

13. Wellings A. Editorial: real–time software // lEEE Software
Engineering Journal (Special Issue on Real–Time Software),
1991. – No. 3(6). – P. 66–67.

14. Stewart D. B., Khosla P. K. Real–time scheduling of
sensor–based control systems // In Eighth IEEE Workshop on
Real–Time Operating Systems and Software, 1991.

15. Gaitan V. G., Popa V., Turcu C., Gaitan N. C., Uugurean
I. The Uniform Engineering of Distributed Control Systems
Using the OPC Specification // Advances in Electrical and
Computer Engineering, 2008. – Vol. 8. – No. 2. – P. 71–77.

16. Gaitan V. G., Popa V., Ungurean I., Gaitan N. C. The
Integration Of Real Device Capabilities In Distributed
Applications Based On OPC Technology // 12th WSEAS
International Conference on Computers. – Heraklion, Creta
Grecia, 2008. – P. 48–153.

17. Riid A., Preden J., Pahtma R., Serg R., Lints T.
Automatic Code Generation for Embedded Systems from
High–Level Models // E Electronics and Electrical
Engineering. – Kaunas: Technologija, 2009. – No. 7(95). – P.
33–36.

18. Brazaitis A., Guseinoviene E. Control of Activators of
Mechatronic Devices by Real Time Information Transfer //
Electronics and Electrical Engineering. – Kaunas:
Technologija, 2009. – No. 2(90). – P. 89–94.

Received 2010 01 30

N. C. Gaitan. Real-time Acquisition of the Distributed Data by using an Intelligent System // Electronics and Electrical
Engineering. – Kaunas: Technologija, 2010. – No. 8(104). – P. 13–18.
 For real time applications, the specific time requirements represent the main constraints, and their controlling is an essential factor in
order to establish the quality of the accomplished services. The time constraints might be found within more application areas, such as
the automatization of industrial equipments, the embedded systems, the control of vehicles, monitoring the nuclear devices, supervising
the scientific experiments, robotics, conditioning of audio and video multimedia data flows, monitoring the surgical interventions, as
well as supervising the stock exchange operations. Within this paper, the hardware and software architecture of an intelligent system for
real time acquisitions of the distributed data is presented. This intelligent system is represented by means of an embedded device,
performed with a STR710FZ2 microcontroller and a RTX real time kernel. Ill. 3, bibl. 18 (in English; abstracts in English, Russian and
Lithuanian).

Н. C. Гайтан. Сбор распространённых данных, которые используют интеллектуальную систему в реальном времени //
Электроника и электротехника. – Каунас: Технология, 2010. – № 8(104). – C. 13–18.

У программ реального времени существуют конкретные требования, зависящие от времени. Это и является одной из
главных проблем. Контроль данных программ – это главный фактор определения качества предоставляемых услуг.
Ограничение времени встречается в довольно многих областях применения программ, к примеру в областях автоматизации
промышленности (встраиваемые системы, контроль транспортных средств, мониторизация ядерных объектов, контроль
научных экспериментов, роботика, потоковое видиео и аудио, мониторизация хирургических операций, а также мониторинг
фондовых рынков). В данной статье представлены обе архитектуры: аппаратная и на уровне программ интеллектуальной
системы сбора распространённых данных в режиме реального времени. Эта система представляется как „embedded“
устройство сделанная с помощью микроконтроллера STR710FZ2 и ядра реального времени RTX. Ил. 3, библ. 18 (на
английском языке; рефераты на английском, русском и литовском яз.).

N. C. Gaitan. Realaus laiko intelektualiųjų sistemų paskirstytųjų duomenų surinkimas // Elektronika ir elektrotechnika. –
Kaunas: Technologija, 2010. – Nr. 8(104). – P. 13–18.
 Įrodoma, kad šiandieninėse sistemose (transportas, medicina, atomistika, intelektualiosios mokslinės sistemos ir kt.) daugiausia
dėmesio skiriama programų duomenų kontrolei. Siūlomos dvi programų architektūros: plačiai naudojama paprasta ir realaus laiko
intelektuali. Plačiai aprašoma intelektualioji architektūra, sukurta mikrovaldiklio STR710FZ2 pagrindu realiu laiku. Il. 3, bibl. 18 (anglų
kalba; santraukos anglų, rusų ir lietuvių k.).

	ELECTRONICS AND ELECTRICAL ENGINEERING
	ISSN 1392 – 1215 2010. No. 8(104)
	ELEKTRONIKA IR ELEKTROTECHNIKA
	AUTOMATION, ROBOTICS
	T 125
	AUTOMATIZAVIMAS, ROBOTECHNIKA
	Real-time Acquisition of the Distributed Data by using an Intelligent System
	N. C. Gaitan
	Introduction
	The hardware architecture of an intelligent master towards the acquisition of distributed data
	The real time operating system
	The real time kernel
	The software architecture of an intelligent master
	Conclusions
	Acknowledgements
	References
	Н. C. Гайтан. Сбор распространённых данных, которые используют интеллектуальную систему в реальном времени // Электроника и электротехника. – Каунас: Технология, 2010. – № 8(104). – C. 13–18.
	У программ реального времени существуют конкретные требования, зависящие от времени. Это и является одной из главных проблем. Контроль данных программ – это главный фактор определения качества предоставляемых услуг. Ограничение времени встречается в д...

