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Introduction 

 
At the present day there are many types of filters for 

numerous filtering and signal processing tasks. This article 
reviews filters approximating the amplitude-frequency 
response (AFR). 

Filters with the highest gain slope can be synthesized 
on the basis of elliptic approximation. The elliptic 
functions can be used to create the highest selective filters 
[1]. However, the high gain slope of elliptic filter is 
achieved at the cost of the higher Q-factor of filter 
sections, which requires complex calculations and accurate 
tuning. The scheme of such filter is not only larger and 
more complicated, but also more sensitive to the values of 
its parts and environment conditions, such as a 
temperature. 

By reducing Q-factor of filter it is possible to 
simplify its circuitry. It is obvious, though, that selectivity 
of the filter with limited Q-factor shall be lower, compared 
to selectivity of the elliptic filter of same order. However, 
by using zeros in the transfer function, it is possible to 
create a filter with higher selectivity, compared to the 
selectivity of Chebyshev filter of the same order and higher 
Q-factor. 
 
Estimation of the Q-factor for pole pairs 
 

When synthesizing filters, the value of Q-factor has 
decisive importance for their selectivity [2]. Taking these 
values into account is the most relevant when realizing the 
filters with losses in reactive elements (inductivities and 
capacities) and during the synthesis of the active RC-
filters. High Q-factor value in passive analog schemes 
requires either the higher quality of the reactive elements 
(smaller losses) or the increased filter order. In case of the 
active RC-filters the higher Q-factor of filter section with 
order 2 can require more active (such as transistors or 
operational amplifiers) and passive elements. That is why 
it’s so important to develop the algorithms for the optimal 
filters design with the specified or minimal poles Q-factor. 

Since a transfer function (TF) of the elliptic filer with 
order 2 has complex conjugate poles and purely imaginary 
zeros, it can be written the following way 
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where bi and ai are the quotients of a numerator and 
denominator polynomials of complex variable p. 

For quadratic reduced polynomial of type 
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where a1 and a0 are polynomial quotient. In this case       
Q-factor can be calculated the following way 
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When considering Q-factor of the elliptic filter TF 
numerator, it can be shown that the Q-factor tends to 
infinity, since the zeros are purely imaginary (quotient of p 
is zero). Therefore, Q-factor of zeros is omitted in the 
computation equations during design of filter schematic. 
However, it’s obvious, that the scheme of the 2-nd order 
filter section with fractionally rational TF (1) shall be more 
complicated than the scheme of the 2-nd order filter 
section with polynomial TF. 

Since the TF denominator of the stable circuit is the 
Hurwitz polynomial, the roots of this polynomial can be 
either real negative, or they can form the complex 
conjugate pairs with negative real part. In both cases, the 
Q-factor of the pole pair can be calculated by following 
formula [3] 
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where α and β are real and imaginary parts of the pole pair, 
respectively. 
 The expression (4) makes it obvious that, when  the 
Q-factor of the poles increases, they tend to the imaginary 
axis of the complex plane, which increases sensitivity of 
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the entire filter. There is another obvious fact – the purely 
real pole with the multiplicity of 2: pi = pi* = -α, has the 
minimal Q-factor. Synthesis of such filters is described by 
authors in their article [4]. The same article contains table 
of TF quotients for some orders. 
 
Filter design problem with specified Q-factor  
 

The filter synthesis problem with specified Q-factor 
parameter was solved by applying optimization 
procedures. 

During the filter synthesis, designer usually specifies 
bounds for pass band and for stop band. The AFR is not 
allowed to exceed these bounds. These requirements can 
be shown graphically as two passages (Fig. 1).  

 

 
Fig. 1. AFR passages for pass band and stop band 
 

For solution of similar problems, MATLAB package 
includes different Optimization toolbox procedures, for 
example, fminsearch and fmincon [5]. In order to switch 
from the problem with multiple criteria to the problem with 
single criteria, we shall use linear convolution method [6] 
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where fi(x) are penalty functions for controlled parameters 
and αi > 0 – weight quotients, which can be considered to 
be the relative indexes of the penalty functions importance; 
L is the number of the penalty functions. In such case, the 
multiple criteria optimization problem shall be following 
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 To solve this problem, we need to compose the 
penalty function for pass band of the filter. This function 
can be represented by a sum of the all AFR samples, which 
exceed the given bound for band pass flatness (Fig. 2). 
Such sum can be written by the following expression 
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where Ω1 = 0, ΩK = 1 (normalized cut-off frequency), 
H(x, Ωk) is the absolute value of the transfer function for 
current argument x values at the frequency Ωk, Hmin is 
minimal allowed value of the AFR pass band. 

  

 
Fig. 2. Forming AFR error in pass band 
 
 In similar way, we must also compose the penalty 
function for stop band. This function can also be 
represented by a sum of the all AFR samples exceeding 
given minimal attenuation at the control frequency (Fig. 3).  

 
Fig. 3. Forming AFR error in stop band 
 

Such sum can be written by the following expression 
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where Ω1 is the normalized limiting frequency of the stop 
band (control frequency); ΩM is AFR calculation limiting 
frequency; H(x,Ωm) is the absolute value of the transfer 
function for current argument x values at the frequency 
Ωm; Hmax is maximal allowed value of the AFR stop band. 

For this specific problem we had to add another 
penalty function to control the Q-factor of poles. This 
function can be represented by a sum, which consists of the 
Q-factor values exceeding given value 
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where Qi is the Q-factor of the i-th complex conjugate pole 
pair; n is the number of these pole pairs; Qmax is specified 
Q-factor limit. 
 
Calculation algorithm for design of the filters with the 
specified Q-factor parameter 
 

Authors of this article created a function for 
MATLAB software package. This function calculates 
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quasi-elliptic prototype, which complies the specified AFR 
and Q-factor requirements  

The algorithm (Fig. 4) of this problem solution is 
given further as a sequence of following actions.  

1. Specify prototype requirements: 
− N – the order of filter; 
− NZ – the number of zero pairs; 
− Qmax – maximal allowed Q-factor of pole pairs; 
− amax – AFR band pass flatness, dB; 
− amin – stop band minimal attenuation, dB; 
− KΩ  – control frequency. 

2. Calculate analog elliptic prototype. Calculate 
Chebyshev prototype if number of zero pairs NZ = 0. 
Create an argument x for target function F(x) and 
minimize it according to (6). 

3. Q-factor maximization: if maximal Q-factor doesn’t 
reach specified limit, increase amin and repeat step 2. 

4. Minimization of the transition band width: if minimal 
attenuation at the control frequency exceeds given 
value, increase control frequency and repeat steps 2 
and 3. 
At the end of the optimization procedure the program 

outputs zero and pole values for a prototype, which 
complies specified requirements. 

 
Fig. 4. Blog-diagram of the optimization algorithm 

 
Authors of this article created a program for 

MATLAB software pack, which calculates and 
sequentially improves (if this is possible) the quasi-elliptic 
filter, which complies specified requirements.  
 
Quasi-elliptic prototype example with specified 
Q-factor of poles 
 
 Let’s consider a prototype with following 
requirements: the order is N = 7, number of zero pairs is 
Nz = 3. Maximal pole pair Q-factor is limited to a value of 
Qmax = 5. Let’s also specify band pass flatness amax = 0.3 
dB and minimal attenuation amin = 65 dB starting by 
control frequency of ΩK = 1.6. 

By using MATLAB program, which realizes 
described before algorithm (Fig. 4), we calculated values 
of zeros and poles. These values are available in Table 1. 
 
Table 1. Poles and zeros of the synthesized prototype TF 

Poles Zeros 
-0.1165823 ± 1.0866546i 
 -0.3264229 ± 0.6176561i 
 -0.1825970 ± 1.0227336i 

 -0.4103039 

±3.0950120i 
±1.8793181i 
±1.5682279i 

 
 With these zeros and poles it is possible to calculate 
transfer function of the prototype in following way: 
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where zi and pi are zeros and poles of the transfer function, 
respectively, NZ is the number of zero pairs, N is the order 
of prototype. 
 For comparison, the plot contains also curve of the 
Chebyshev prototype of the 7-th order with AFR pass band 
flattening amax = 0.3 dB. 
 

 
Fig. 5. Comparative curves of the attenuation for quasi-elliptic 
and Chebyshev prototypes 

 
Even though maximal Q-factor of Chebyshev 

prototype poles exceeds the specified value                      
(max(Q) = 7.68),  the synthesized quasi-elliptic prototype 
provides attenuation of 65 dB at the lower control 
frequency. Note that Chebyshev prototype of given order 
can’t satisfy given requirements at all. 

 

 
Fig. 6. Pass band of the synthesized quasi-elliptic prototype 

 
Also note that behaviour of the transfer function in 

the passband is equiripple (Fig. 6), and behaviour in the 
stop band is also sufficiently close to equiripple (Fig. 5). 

Usually such filters realized as a cascade of the 2-nd 
order filter sections with a transfer function (1). Therefore, 
such synthesis approach described in this article simplifies 
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realization of a filter, especially realization of the filter 
sections with high Q-factor values. 

It is obvious, that selectivity of the synthesized 
prototypes is significantly lower, than selectivity of elliptic 
prototypes. However elliptic filters are much harder to 
realize, since all their filter sections have fractionally-
rational transfer functions. Chebyshev filters, on the other 
hand are much simpler, but their transfer functions doesn’t 
have zeros, which can significantly increase selectivity. 

 
Conclusions 
 

This article describes the algorithm for quasi-elliptic 
filters synthesis with specified Q-factor parameter. Such 
approach allows simplifying of the filter schematics, 
compared to ones of the elliptic filters. At the same time, 
selectivity of the quasi-elliptic filters is often higher than 
selectivity of the Chebyshev filters of the same order (Fig. 
5) with Q-factor of poles greater than specified, in some 
cases much greater. 

In the example prototype it has been shown, that AFR 
of the synthesized prototype can be equiripple in both 
frequency bands.  
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