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Abstract—A simplified approach to classification of
multispectral image fragments by their specific spectral
features is presented. Application of this approach to
discrimination of vegetation areas occupied by the Giant
Hogweed species is described and compared with an approach
based on calculation of the Consolidated Covariance Image.
The proposed method is based on calculation of mean and
standard deviation and successive thresholding within certain
spectral bands that are found to be informative for the specific
task by analysing the ground truth data. It is shown that the
method provides close to perfect discrimination of Giant
Hogweed from other vegetation areas represented in ground
truth data (absence of commission errors together with clear
identification of Giant Hogweed fragments in corresponding
ground truth regions). Simplicity of the method provides for
fast processing of multispectral images from large areas. The
proposed approach is perspective for analysis of multispectral
images in different application fields where it is possible to
choose several informative spectral bands, e.g. in biomedical
imaging.

Index Terms—Multispectral imaging, image classification,
spectral features.

I. INTRODUCTION

Multispectral imaging (MSI) becomes increasingly
popular for analysis of objects in remote sensing [1]-[5],
biomedicine [6]-[7] and some other research fields. It is
characterized by acquisition of images usually in less than
20, generally non-contiguous, spectral bands in visible and
near infrared wavelength ranges. One of the common
processing tasks in MSI is to classify image pixels or regions
into several classes of interest. While the number of bands in
MSI is significantly lower than in hyperspectral imaging
where it exceeds 100, the amount of data to be processed,
especially in remote sensing applications, can be huge, and it
is of major importance to simplify processing and exploit
only data from limited number of spectral bands that may
serve as features for classification. If the spectra of pixels of
different classes overlap significantly, it is necessary to
apply rather sophisticated techniques, e.g. Bayesian
classification serving well for a lot of tasks related with
observation of natural phenomena [8]. However, in certain
cases it is possible to find characteristic spectral features and
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distinguish between the classes using simpler rules. It is true
especially in cases where classification is performed within a
low number of classes, possibly after some simple
preprocessing that has masked out parts of image that are
spectrally really different and clearly out of interest.

The paper discusses one such simplified classification
approach that have proved to work efficiently for particular
application task of finding areas covered by invasive plants
in remote sensing data. The approach however is generic and
may serve for different tasks as well, e.g. for classification of
skin lesions in biomedical MSI.

The problem of mapping invasive plants is important in
many countries and its solution based on multispectral
remote sensing was considered since satellite images became
available [9]. Mapping and elimination of Giant Hogweed
(Heracleum sosnowskyi Manden) causing stress to the
natural ecosystem and being a human health hazard is of
considerable importance in Latvia as well as several other
Eastern European countries. The paper presents a method for
processing of multispectral images and its application
example related with mapping of separately growing Giant
Hogweed areas in a 15-band multispectral image acquired
using the airborne hyperspectral sensor.

Il. DATA ACQUISITION

Multispectral data used within this study were acquired by
the Institute for Environmental Solutions (www.vides
instituts.lv) in one flight over the area in Latvia containing
known sample fields containing hogweed and other
characteristic types of vegetation (forests, meadows,
cornfields etc.). Total analysed area is about 150 ha. To
acquire the multispectral data, a hyperspectral imager CASI-
1500 from ITRES Research (http://www.itres.com) was
used, mounted in the Observer P-68 aircraft. Imager was
configured to use a full field of view (40 and to combine
data into 15 spectral bands: pixel values for band 1 are
related with average light intensity for wavelengths
427.3 nm * 28.6 nm, band 2 for 479.8 nm + 23.9 nm, band 3
for 518.0 nm = 14.3 nm, band 4 for 551.4 nm £ 19.1 nm,
band 5 for 597.9 nm £ 27.5 nm, band 6 for 633.7 nm + 8.4
nm, band 7 for 671.9 nm + 29.8 nm, band 8 for 710.1 nm +
8.4 nm, band 9 for 728.0 nm + 9.5 nm, band 10 for 742.3 nm
+ 4.8 nm, band 11 for 761.4 nm + 14.3 nm, band 12 for
804.4 nm + 28.6 nm, band 13 for 866.4 nm * 33.4 nm, band
14 for 922.4 nm + 22.6 nm, and band 15 for 991.5 nm +
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44.1 nm. Geo-corrected multispectral image with a spatial
resolution 0.5 m x 0.5 m was obtained by exploiting GPS
data that were also collected during the flight. Radiometric
and geometric corrections were made using the ITRES
software. No atmospheric corrections or spectral
transformations were made.

Ground truth regions for major pixel classes were marked
on the image by the person familiar with the study area:
Hogweed (marked as Hn, where n is the sequence number),
Trees (Tn), Crops (Cn), Grass (Gn), Grass-cut (GCn), Road-
cement (Rn), Road-gravel (RGn), and Soil (Sn). Processed
image visualized from the spectral bands similarly to human
perception is presented in Fig. 1. It is noticed that the image
contains also pixels not related with one of major classes so
it is necessary to mask them out and limit analysis only to
vegetation areas possibly including hogweed pixels.

Fig. 1. Central part of the processed image visualized as RGB image from
3 spectral bands (band 7 mapped to red colour, band 4 to green colour,
band 1 to blue colour), with marked design regions for pixel classes.
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Fig. 2. Enlarged image of the area containing a hogweed region H1 (a) and
the corresponding CCIm (b).

I1l. METHODS

Zoomed-in area related with hogweed is shown in
Fig. 2(a). It is seen that hogweed areas are speckled and
characterized by a large variance of pixel values in
visualized spectral bands. Therefore initially application of
the Consolidated Covariance Image [10] (CCIm) to
detection of hogweed areas was considered. It allows the
image to be transformed to the form where the increased
covariance around a pixel results in brighter colours of that
pixel. CCIm of the area was calculated based on processing
image fragments of size 5 x 5 pixels; covariance values
shown with red colour were obtained from initial pixel
values in bands 1..7, values shown with green colour were
obtained from bands 8..10, and values shown with blue
colour were obtained from bands 11..15. Obtained CCIm is
illustrated in Fig. 2(b). It is seen that, indeed, hogweed areas
are nearly white. However, forest regions including shades
are also characterized by large variance of pixel values for
the involved spectral bands; the same applies to places
related with transitions from one pixel class to another.
Therefore application of CCIm requires some further
processing to filter out such artifacts. This approach is also
characterized by rather large amount of calculations and a
possibility to apply a simpler approach was investigated.

To deal with pixels related with vegetation, different
vegetation indices are used [11]. For our task, a simple ratio
vegetation index (RVI) was calculated as a ratio of pixel
values from bands 12 and 7, and thresholding used to
separate pixels of interest. Fig. 3 illustrates the results
obtained when the threshold is chosen such that pixels not
related with green vegetation are masked out.

Vegetation present in the processed multispectral image
falls into 4 categories: hogweed, trees, crops and grass. Each
pixel in the image is represented by a vector of 15 average
light intensity values from the mentioned spectral bands.
Ground truth regions for each of these classes are marked on
the image and used as design regions of the classifier.

Each marked region was divided into fragments with size
7 x 7 pixels without overlapping. For a fixed spectral band A
*= AA, within a set of pixel values from each fragment, two
characteristics were calculated, namely mean value m and

standard deviation s, of light intensity. As these values for
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different fragments within a marked region generally are not
equal, it is important to consider minimum and maximum
values of these characteristics for each region.

.é) -

b)
Fig. 3. Masking of non-vegetation pixels using ratio vegetation index
(RVI): () RVI image fragment; (b) thresholding result.

Minimum mean values and standard deviations of light
intensity within fragments, obtained for hogweed design
regions (see Fig.4), feature 3 local extremes in spectral
bands 4, 12 and 14. It was noticed that intensity values for
hogweed were higher than corresponding values for trees,
and for majority of cases higher than corresponding values
for grass and crops as well. Analysis of graphs show that
particular interest should be focused on spectral bands with
wavelengths |, =550nm, | , =800nm and | ; =925nm. In

Fig. 4, local minima m(l j) for hogweed design regions are

indicated. Thresholds A;, A, and A, are defined then as
follows:

Ay =my (1) -, =2410-10 = 2400, @
Ay =My (I 2)—€, =7310-10 = 7300, @
Ag = (I 3)—e3 =4010-10 = 4000, ®)

where the value e; =10 is chosen to guarantee that values
m, for hogweed fragments are higher than corresponding

threshold A;. Obviously, it should be taken into account

that for some fragments of trees, grass or crops, mean value
m, may be higher than the corresponding threshold value

Aj. Therefore two additional thresholds are defined:

A4 =Sh(| 1)—e4 =350,
AS =Sh(| 2)—95 =570,

4)
®)

i
hogweed fragments for corresponding wavelengths.

where sh(l ) are minimum standard deviation values for
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The main construction principle of the classifier for
identification of the hogweed fragments is formulated as
follows: to guarantee that each fragment of the image related
with hogweed will be characterized by such values m. and

S|, that exceed corresponding thresholds but fragments

containing trees, grass or crops will not meet at least one of
these 5 conditions. Construction of classifier Cy is explained
below.
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Fig. 4. Minimum mean values (a) and standard deviations (b) for spectral
bands in hogweed design regions with thresholds used for classification
identified.
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Preprocessing

— | —analysed image with 15 spectral bands

— obtain 13 from | by taking data for spectral bands 4, 12
and 14 only

— obtain DRF by dividing design regions from 13 into 7x7
pixel fragments

— calculate mean and standard deviation of intensity
values for non-overlapping fragments of DRF

— calculate thresholds A;, A,, A;, A,, Ag from mean
and standard deviation values according to (1)-(5)

— calculate threshold Ag =2.75 as the mean value of
minimum vegetation indices in hogweed DRFs.

Classifier C;

— calculate ratio vegetation index image RVI = Ip/l7
(ratio of values from bands 12 and 7 for each pixel)

— calculate binary image VIT = (RVI > Ag)
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— calculate 13result = 13 .* imdilate(VIT), i.e., multiply
image 13 pixel-by-pixel by the morphologically dilated
image VIT

G1

Fig. 5. Hogweed identification results obtained using classifier Cz in the
lower left part of the processed multispectral image.

— calculate values for each fragment of I3result :

0 mean values m1, m2, m3

0 standard deviations sl, 2
— calculate result RES as binary image containing a
logical O for a fragment of 13result, ifmL> & m2> A, &

m3> A; &s1> A, &s2> Ag and 1 otherwise.

Result RES obtained using classifier C; is presented in
Fig. 5 for enlarged lower left part of the multispectral image.
It is a binary image where zeroes (black) refer to the
detected hogweed fragments. Design regions are also
marked. It is noticed that there are no hogweed fragments
detected in design areas of different classes. Hogweed areas
which can be clearly identified visually in the multispectral
image are detected also in the results. On the other hand,
there are hogweed fragments detected in other parts of the
image where they are not noticed visually in multispectral
image; that may indicate possible commission errors.

Colour versions of images can be downloaded from [12].

IV. CONCLUSIONS

Classifier Cy constructed on the basis of RVI and data
from the design regions provides relatively precise
identification of hogweed fragments of the processed
multispectral image.

Although the classification rules exploit data from only 4
spectral bands, it was sufficient to obtain qualitative
detection results of hogweed. No commission errors were
observed in design regions of different classes.

Quite similar detection results of the hogweed fragments
was obtained using the classifier C, built on the basis of
forming CCIm.

It remains an open question whether these classifiers will
show similar characteristics when applied to multispectral
images obtained in similar conditions using the same

equipment. Construction of classifiers on the basis of
fragment size 9 x 9 pixels did not affect the hogweed
detection result. As we had no detailed field data about the
vegetation presented in the multispectral image, we cannot
be sure that all fragments where hogweed was detected
contain these plants in reality. The same reason does not
allow us to identify commission errors and calculate
meaningful identification accuracy estimates.

Classifier C; is considerably more sophisticated therefore
we recommend usage of Ci.
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