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1Abstract—The optimum position of parallel underground
cables will be calculated numerically. The criterion is how
much joule losses should be dissipated in each cable so that the
temperature increases of all cables are equal. A simple
analytical formula is also given.

Index Terms—Analytical analysis, numerical analysis, power
cables, temperature control.

I. INTRODUCTION

Underground power cables are thermally well insulated.
At a depth of about 1 m the amount of ground surrounding
the cable is quite huge so that it behaves as a high thermal
resistance. As a consequence the temperature of the cable
can be relatively high even for moderate values of the Joule
heat produced in the cable as compared to the same cable in
air with natural convection cooling. Due to the increasing
demand for electric power, the thermal load of many cables
is growing continuously because it is not possible in practice
to install new cables any time the power demand is
increasing. Several papers have treated the thermal problems
of underground cables [1]–[17].

If cables have to be deposited underground, a well has to
be excavated and several cables are installed parallel next to
each other. Normally the power in all cables will be
different. Hence one can ask the question in which order one
has to put the cables so that the temperature distribution is
optimal, i.e. the maximum temperature should be as low as
possible. It can be proved that this problem is equivalent to
the following one: how to interchange the position of the
cables so that the temperature distribution is as uniform as
possible. Needless to say, a uniform temperature distribution
is the optimal situation.

Intuitively, it is clear that if all the cables have exactly the
same Joule power, the cable in the middle will have the
highest temperature. The outer cables will be at the lowest
temperatures. If the transmitted power of each cable is
different, one should install the cables with the highest
power at the ends and the cable with the lowest power in the
middle to approach the optimal situation as good as
possible.
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The reason for this investigation is obvious. If several
cables are buried next to each other, it is of practical use to
arrange them in such a way to reduce the extreme
temperatures as much as possible.

Fig. 1. Cross sectional view of the layout of the underground cables.

Related problems exist in other fields such as
microelectronics. If several heat dissipating components are
placed on a single substrate, a different layout can give rise
to a more uniform temperature distribution and hence to a
reduced peak temperature [18]–[22].

II. SIMULATION RESULTS

The problem of underground cables has been simulated
numerically using the COMSOL multiphysics software [23].
A steady state analysis has been carried out using the
geometry shown in Fig. 1.

As the cables are very long only a cross section has to be
considered. This gives rise to a two dimensional analysis.
The dimensions of the box are 5 m  2 m. The cables are at
a depth of d = 1 m. The bottom and the two sides are
modelled as adiabatic boundary conditions. The ground has
a thermal conductivity k = 0.83 W/m.K. The ground level is
cooled convectively. A heat transfer coefficient h = 20
W/m2K has been used and the ambient air temperature was
set to = 20airT C .

Each cable has an external diameter of 5 cm. The metal
conducting part with a diameter of 3 cm was assumed to be
made of copper with a thermal conductivity k = 400 W/m.K.
The electrical insulation around each cable has a thermal
conductivity k = 0.28 W/m.K. At the copper insulation and
insulation ground interfaces, the continuity of the
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temperature and the heat flux were used as boundary
conditions.

Fig. 2. Optimal power distribution in the cables as a function of the
position of the cables.

In every cable i a certain amount of Joule heat is produced
denoted with pi (W/m). As a consequence each cable will
have a temperature rise Ti above the ambient value. Our goal
now is to find a set of power values pi so that all the cable
temperatures turn out to be equal or T1 = T2 = …Tn.

For the thermal conduction in the ground the Laplace
equation has to be solved in order to determine the
temperature distribution. The solution is carried out using
the finite element package COMSOL. With this software
package, as well as with other ones, it is quite easy to find a
temperature distribution provided the heat generation is
known. In this research, we want to solve the inverse
problem: which should be the distribution oft the heat
generation in order to get a uniform temperature distribution
in the cables. The inverse problem will be approached using
the superposition principle.

In order to find the power distribution {pi |, i=1...n} an
arbitrary power p0 is generated in cable 1 and zero power in
all the other cables. After simulation we obtain the
temperature values T11 in cable 1, T21 in cable 2, T31 in cable
3,… The same procedure is then repeated with a constant
power p0 in cable 2 and zero power in the all the remaining
cables. The corresponding temperature values is then T12 in
cable 1, T22 in cable 2, T32 in cable 3,…. This procedure is
repeated for all n cables. If a power distribution p1 ,p2, p3,…
is applied, the temperature of cable i is found by
superposition

3
31 2

1 2
0 0 0

= ... .ii i i
pp pT T T T

p p p
   (1)

Requiring that all cable temperatures must be equal

1 2 3 4= = = = ... ,T T T T (2)

gives rise to an algebraic set of n-1 equations with n
unknowns: p1, p2, p3,…. However, one can always choose
one; say p1, because if all the power values are multiplied by
the same constant, one still obtains a uniform temperature
distribution. Hence, an algebraic set of n-1 equations and n-
1 unknowns (p2, p3,…) remains. Obviously the problem can
be simplified further on by taking the symmetry into
account. It is clear that p1 = pn, p2 = pn-1,… so that n/2-1
unknowns remain in case n is even. For odd n, the number
of unknowns is reduced to (n-1)/2. Simulations have been
carried out for 3, 6, 9, 12, 15, 21 and 30 cables, the results of
which are displayed in Fig. 2.

All power values have been normalised to the values
obtained in the middle (x = 0). As expected, the outer cables
allow a much higher power transmission. It is surprising to
learn that the power in the outer cables can be several times
the power value in the central cables. A more careful
discussion of these results will be given further on in this
paper.

III. THEORETICAL ANALYSIS

As has been pointed out the optimal situation corresponds
to a uniform temperature of the cables. For the theoretical
analysis the problem will be reversed: given a constant
temperature which the corresponding power distribution?
The purpose of the theoretical section is to find a simple
analytical formula which can be used on the numerical data
so that a simple design rule could be obtained. As a
consequence, the theoretical analysis can be largely
simplified. First of all, the cables are now replaced by a
horizontal flat plate BC at a uniform temperature T0 as
shown schematically in Fig. 3(a).

Fig. 3. Conformal mapping used to determine the optimal power
distribution analytically.

Secondly, it is assumed the plate BC is sufficiently deep
below the ground level, so that convection can be neglected.
Moreover, we are mainly interested in the temperature field
near the plate BC. The plate BC with a width 2a is now
placed in an infinite medium with thermal conductivity k.
Due to symmetry it is sufficient to consider only the upper
half part y > 0 of Fig. 3(a). This problem has been described
in several textbooks mainly devoted to potential theory [24],
[25]. The most obvious way to solve the problem of Fig.
3(a) is to use a conformal mapping from the z = x + jy to the
w = u + jv plane

= sin( )           = arcsin .zz a w or w
a
 
 
 

(3)
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The half upper plane y > 0 is then mapped into a strip in
the w plane borned by / 2 < < / 2u   and > 0v (Fig.
3(b)). In the w-plane the temperature distribution T depends
only on v

0( ) = ,T v T v (4)

which corresponds to a uniform heat flux p(u) = k in the
plane. The complex temperature distribution in the w-plane
is then

0( ) = ,T v T j w (5)

which can be easily found because (4) is nothing else than
the real part of (5). In the z-plane the complex temperature
distribution is then given by

0( ) = arcsin .zT z T j
a

    
 

(6)

The complex temperature gradient is found by taking the
derivative of (6)

2 2

( ) = arcsin = .dT z d z aj j
dz dz a a z

 


(7)

Putting z = x and bearing in mind that the imaginary part
of (7) is the heat flux in the y direction, one gets the power
density distribution along the plate

2 2

1( ) .p x
a x




(8)

The proportionality constant is not important because the
final solution can only be determined with respect to a
constant.

IV. DISCUSSION

In this section it will be investigated how well the
theoretical formulae (8) can be fitted to the simulation
results shown in Fig. 2. To each cable a coordinate xi can be
assigned, given by

1= [ ] 5 ,
2i

nx i cm
  (9)

where = 3,6,9,...30n , which corresponds to the centre of
each cable. The half width of the cable set is then an = (n/2)
 5 cm. According to the theoretical results (8), one has to
to verify whether

2 2

1 ,i
n i

p
a x




(10)

turns out to be valid or not. It is more convenient to verify
that

2 2 ),2
1 ( n i
i

a x
p
  (11)

will be valid for all values of n used in the simulations.

Fig. 4. Optimal power distribution (pi) versus cable position (x).1/pi2 is
plotted versus x2 in order to obtain a linear relationship.

In Fig. 4 1/pi2, as obtained from the simulations, has been
plotted as a function of xi2. It is remarkable that a linear
relation appears which is in full agreement with the
theoretical analysis. Moreover, all lines intersect the
horizontal axis in points with abscissae given by an2, in full
agreement with (11).

Taking into account that the theoretical analysis, outlined
in the previous section, assumed an infinitely thin flat plate
as the heat source at a uniform temperature whereas the
simulation used cables for the heat generation, the
agreement between both can be described as surprisingly
good.

In the theoretical section, convection on the ground level
was not taken into account. The ground layer was assumed
to be infinite. It proves that the power distribution is entirely
determined by the thermal conduction in the near
neighbourhood of the underground cables.

The same set of simulations has also been carried out for
different cable diameters giving the exact same results.

V. CONCLUSION

The optimal power distribution for underground cables
has been determined using numerical simulations. The
criterion was that all cables should have the same
temperature increase. The same problem was also solved
using an analytical calculation and it was found that the
numerical results agree very well with the theoretical
analysis. As a consequence, one has now a simple formula
to find the optimal power distribution for a set of
underground cables.
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