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1Abstract—Compression of highly correlated measurement
signals is considered using DPCM/ADPCM (Difference Pulse
Code Modulation/Adaptive Difference Pulse Code Modulation)
technique. It is important since very often transmission and
storage of measurement signals are needed. Theory is applied
on ECG (Electrocardiogram) signal, as an example of highly
correlated signals. Very good performances are achieved: high
compression rate and high improvement of performances are
obtained.

Index Terms—ECG signal compression, DPCM system,
linear prediction, logarithmic µ-law quantizer.

I. INTRODUCTION

Measurement signals should be stored or transmitted to
some distant location for further processing. Due to limited
resources, the compression of the measurement signals is
desirable [1]. One of the most effective techniques for signal
compression is the prediction, where the prediction of the
current sample is formed based on the previous samples, and
after that the difference between the current sample and its
prediction is quantized and transmitted. The prediction is
based on the fact that samples of the most real signals are
correlated. Using prediction, decorrelation of the signal is
done, i.e. the redundancy of the signal is removed. The
efficiency of the prediction depends on the degree of
correlation between samples: the prediction is more
effective if samples are more correlated. DPCM technique is
based on the linear prediction, where the prediction of the
current sample is calculated as the linear combination of
previous samples [1]–[4].

The linear prediction is mostly used due to its simplicity.
If the degree of correlation between consecutive samples
varies with time, then ADPCM can be used, where
adaptation of the predictor coefficients is done according to
the correlation between samples [3], [4].

In this paper the compression of the high correlated
measurement signal is considered using prediction. The
design of DPCM/ADPCM system is analyzed. Since the
variance of the measurement signals can vary in time, the
robust quantizer should be used as a part of DPCM system
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since it will give nearly constant SQNR regardless on the
variance [3], [4]. We choose to use the logarithmic
companding quantizer with µ compression law within
DPCM system, due to its robustness. Furthermore, this
logarithmic µ-law quantizer has one more advantage: its
thresholds and representation levels can be expressed in the
closed form, which is not the case with some other
quantizers (for example, the integral equations should be
solved to find thresholds and representation levels of the
optimal companding quantizer) [3]. The quantizer is
designed for Gaussian distribution since it can is usually
used for modelling of measurement signals [5].

As an example of highly correlated signal, we consider
ECG signal, which is a very important diagnostic method in
cardiology. Much important information about heart
working can be obtained from ECG signal and many
diseases can be detected. Usually, multichannel recording of
ECG signal is done, using up to 12 channels [6], which
increases recording data. For diagnostic purposes, recording
of ECG signal can be done continually in some period of
time (e.g. Holter monitoring lasts at least 24 hours),
collecting a large amount of data which should be stored.
Also, due to development of telemedicine, ECG recording
can be done out of hospital. Namely, the device for ECG
monitoring can be mounted on the patient body, recording
and transmitting ECG signal to the hospital. Therefore, in
modern systems for ECG monitoring, a large amount of data
should be stored or transmitted, which requires application
of some compression technique [1], [7]–[10]. Due to the
high correlation of ECG signal, high degree of compression
can be achieved using prediction.

The main contribution of this paper is appropriate choice
of quantizer (robust logarithmic quantizer) and optimization
of correlation coefficient for ECG signal. Therefore, very
good performances are obtained: high quality of quantized
ECG signal and high level of compression. Our model gives
better performances compared to the model described in [1],
where Lloyd-Max quantizer was used.

This paper is organized as follows. Section II describes
the DPCM system and provides some theoretical
explanations. The logarithmic µ-law quantizer is described
in Section III. Numerical results are presented in Section IV.
Section V concludes the paper.

II. DPCM/ADPCM SYSTEM

DPCM is a technique of converting an analog into a
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digital signal in which an analog signal is sampled and then
the difference between the actual sample value and its
predicted value is quantized. Predicted value of the actual
sample is based on previous sample or samples. Basic
concept of DPCM - coding a difference, is based on the fact
that most source signals show significant correlation
between successive samples so that quantizer uses
redundancy in sample values which implies lower bit rate
[3], [4].

The block diagram of the DPCM encoder is shown in
Fig. 1(a)), which consists of the quantizer, inverse quantizer
and predictor. Also, in Fig. 1(a)) the additional subsystem
for the adaptive prediction is shown (buffer and predictor
coefficients estimator which are connected with dotted
lines), forming an ADPCM encoder. Firstly, we will
consider the DPCM encoder. The main idea of the DPCM is
to form the difference nd between the current sample nx
and its predicted value ˆnx , and to quantized and transmit
this difference. Let’s ne denotes the quantization error
which is made by quantization of the difference nd . For the
linear predictor, the predicted value ˆnx is calculated as a
linear combination of the previous quantized samples ny .
The functioning of the DPCM system with the P-th order
predictor is described with the following equations:

ˆ ,n n nd x x  (1)
ˆ ,n n n n n ny d e x x e     (2)
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Fig. 1. DPCM/ADPCM system: a) Encoder; b) Decoder.

Due to simplicity, we will consider the first order
predictor, where the predicted value ˆnx is calculated based
on the quantized value 1ny  of the previous sample 1nx  ,
i.e. 1 1ˆn nx a y  . For the first order predictor it holds that the
coefficient of the predictor is equal to the correlation

coefficient ρ, which represents the degree of the correlation
between the two consecutive samples. It is defined as

1
1

1

2

1

,

S
j j

j
S

j
j

x x

x













(4)

where S denotes the total number of signal samples. In
DPCM system, value of a1 is defined in advance, according
to the class of signals which are considered and it is known
both in the encoder and in the decoder.

The quality of the prediction is defined with the
prediction gain
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The degree of the correlation between consecutive
samples can vary with time. Then, an ADPCM system
should be used, where the adaptation of the coefficient of
the predictor to the changes of the correlation coefficient ρ is
done during the time. ADPCM works in the frame-by-frame
basis. There is a buffer where frames of M samples are
formed. The correlation coefficient for the samples in the
buffer is estimate and the predictor coefficient a1 is adjusted
to this value. Also, this value should be quantized and
transmitted to the receiver as additional information, for
adaptation of the predictor in the decoder.

Figure 1(b) shows the DPCM/ADPCM decoder. In the
feedback of the decoder is the predictor which is the same as
the predictor in the feedback of the encoder. ADPCM
decoder uses the additional information for the adaptation of
the predictor coefficient.

The quality of the reconstructed signal for the DPCM
system is defined with two parameters [3], [11], [12]:
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For the ADPCM system, these two parameters are defined
as

 

2

1 1
ADPCM 2

1 1

SQNR [dB] 10log ,

L M
jn

j n
L M

jn jn
j n

x

x y

 

 

 
 
   
  
 

 

 
(8)

77



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392–1215, VOL. 20, NO. 4, 2014

 
 2

1 1

2

1 1

% 100 ,

L M
jn jn

j n
L M

jn
j n

x y
PRD

x

 

 




 

 
(9)

where L is the number of frames. The aim of the designing
process is to maximize SQNR or to minimize PRD.

III. LOGARITHMIC QUANTIZER WITH µ COMPRESSION LAW

For the quantization of the difference nd between the
actual value of the sample and its predicted value (Fig. 1a)),
the logarithmic companding quantizer with µ compression
law will be used, due to its robustness. Let’s N denotes the
number of quantization levels and maxx denotes the
maximal amplitude of the quantizer. maxx is defined as

max ,xx k   (10)

where x denotes the standard deviation of the original
signal x, and k is the loading factor of the quantizer. Optimal
value of k is found by minimization of the distortion.

The compression function of the µ-law logarithmic
quantizer is defined with the following expression
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where maxx x .
Thresholds ix and representation levels iy of this

quantizer in the positive part of the real axis are defined in
the closed form in the following way
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where 1,..., / 2i N .
Thresholds and representation levels in the negative part

of the real axis are symmetric to those in the positive part.
The parameter µ determines the degree of the robustness of
the quantizer. Higher values of µ provide more robust
quantizers. Since we need very robust quantizer, we will use
high value of 255  . This value is also chosen since it is
used in the G.711 standard.

IV. NUMERICAL RESULTS

Results shown in this section are obtained by the
simulation of DPCM and ADPCM systems. These systems
are applied for the compression of ECG signals, which are
examples of highly correlated measurement signals. We use
ECG signals from the referent MIT-BIH database [13].

The dependence of SQNR on the parameter k is shown in

Fig. 2. for the two bit-rates R = 4 bps and R = 6 bps, where
R = log2N. We can see that the maximal SQNR is obtained
for k = 1.2.

0 2 4 6 8 10
0

10

20

30

40

50

R= 4  bit/sample

S
Q

N
R

[d
B

]

k

R= 6  bit/sample

Fig. 2. The dependence of SQNR on the parameter k.

For DPCM system, the dependences of parameters SQNR
and PRD on the predictor coefficient a1 are shown in Fig. 3
and Fig. 4. Analysis is done for two values of the bit-rate:
R = 4 bps and R = 6 bps.
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Fig. 3. The dependence of SQNRDPCM on the predictor coefficient a1.
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Fig. 4. The dependence of PRDDPCM on the predictor coefficient a1.

We can see that the optimal performances of the DPCM
system are obtained for a1 = 0.98, in both cases, using
SQNRDPCM or PRDDPCM as a measure of quality. These
optimal performances are: SQNRDPCM = 32.27 dB and
PRDDPCM = 2.41 % for R = 4 bps and SQNRDPCM = 44.17 dB
and PRDDPCM = 0.61 % for R = 6 bps. High prediction gain
Gp is achieved, i.e. high increasing of SQNR compared to
the system without prediction (a1 = 0). For R = 4 bps the
prediction gain is Gp = 17.69 dB while for R = 6 bps the
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prediction gain is Gp = 17.91 dB.
Performances of our model are better than performances

of the model described in [1]. In Fig. 5(b) of paper [1] is
shown that performances PRDDPCM = 3.39 % and
PRDDPCM = 4.72 % are achieved using the first and the
second order predictor, respectively, for R = 4 bps , which is
worse compared to PRDDPCM of our model for 0.98 % and
2.31 %. Our model is better than the model in [1] from two
reasons.

i) Firstly, we make better choice of quantizer – since ECG
signal has very high dynamic range, it is much better to use
the robust quantizer such us the logarithmic µ-law quantizer
used in this paper than non-robust Lloyd-Max quantizer
used in [1]. It can be seen from Fig. 5 that the logarithmic µ-
law quantizer has much higher the average SQNR in the
wide range of variances than Lloyd-Max quantizer. For
example, in the range of variances

2 2
0 0( [dB] 30dB, [dB])  , the µ-law logarithmic quantizer

has higher the average SQNR for 6.38 dB.
ii) Secondly, we optimize the correlation coefficient for

ECG signal while in [1] they used coefficients from [3]
which are optimal for speech but not for ECG signal.
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Comparison of the DPCM and ADPCM system is shown

in Fig 6. In this figure is given the dependence of
SQNRDPCM and SQNRADPCM on the length of frame of the
input signal. SQNRDPCM is independent of the M and it is
given for comparison with SQNRADPCM. We can see that
SQNRADPCM is slightly higher compared with SQNRDPCM,
up to 0.75 dB for lower values of M.

V. CONCLUSIONS

We considered high-quality transmission of ECG signal,
which is achieved by appropriate choice of the quantizer, i.e.
using the robust logarithmic µ-law quantizer since the ECG
signal is nonstationary. Also, due to the optimization of the
correlation coefficient of ECG signal, high value of
prediction gain (about 18 dB) is achieved. It was shown that
this model has better performances than the model described
in [1]. ADPCM slightly improves performances compared
to DPCM, for about 0.5 dB, but ADPCM system is more
complex. Since ECG signal is highly correlated and
correlation coefficient is almost constant, it is not necessary
to use ADPCM instead of DPCM since the increasing of
complexity is higher than the improvement of performances.
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