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1Abstract—In this paper robustness analysis and 

simultaneous stabilization of a semiconductor laser (SL) with a 

delayed optoelectronic feedback (OEF) is studied. Using the 

theory of stability radius maximal allowed norm bounded 

perturbations of the SL in contrast to stabilizable intervals of 

OEF parameters are obtained. Using proposed algorithms we 

can analyse the effect of interdependencies of uncertainties of 

the OEF and SL parameters and design an optimal OEF 

according to specific robustness constraints.  

 
 Index Terms—Robust stability, delay systems, 

semiconductor lasers, laser feedback. 

I. INTRODUCTION 

Analysis of plants with time delays has attracted great 

interests in the last three decades [1]. Time delays are 

present in many applications and areas [2], ranging from 

biology, process control, logistics, telecommunications, to 

semiconductor lasers (SLs) [3], which are indispensable in 

many sensor applications [3], [4] or optical communications 

[5], [6]. 

Especially when a SL is used in a specific application, its 

operating features, which depend on its stability, robustness 

and dynamics characteristics are of huge importance. Many 

characteristics can be affected by the use of OEF which can 

be applied to any laser diode [3]. OEF is a connection from 

the optical laser output, which is detected by a photodetector 

to the injection current at the input. The detected 

photocurrent is amplified and fed back to the injected 

current as a positive or negative amount (Fig. 1). Typical 

result of such a feedback is shown in regular or irregular 

(chaotic) pulsations in the output. By appropriate setting of 

the feedback parameters stable and fast pulses with specific 

pulse width can be easily obtained [3]. In this way high 

coherent light source can be achieved. Many applications 

use such a light source as for example laser range finders, 

markers, designators, night vision goggles, rifle sights, 

LIDAR, 3D optical data storage [7]. In recent years the use 

of such systems has been attractive in secure chaos 

communications [6]. The use of OEF introduces a delay to 

the system as a consequence of time responses of a detector 

and electronic circuits. The design and implementation of 

OEF is therefore certainly not trivial as different physical 

disturbances acting on closed loop system might affect the 
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system to such an extent that stable output pulsation might 

become chaotic. 

In this paper we are interested in the optimal design of the 

OEF in sense of robust stabilization and chaos suppression 

in the SL output [3], [8]. We have followed the steps from 

[9] as far as computation of robustness of specific 

parameters is concerned and applied an improved method in 

the sense of efficient computation. We obtained maximal 

bounds of SL parameters uncertainties in contrast to 

simultaneously stabilizable intervals of OEF parameters. We 

propose numerical algorithms for derivation of such 

intervals inside of uncertainties sets. According to proposed 

algorithms and applied specific criteria optimal OEF design 

parameters can be determined, which guarantee certain 

amount of bounded perturbations of the SL and its OEF 

parameters. All the proposed algorithms were implemented 

using MATLAB® and evaluated on a SL model [3]. 

Presented results can be adapted and used for any other 

system that contains time delays.  

The mathematical model of the SL with OEF is described 

in Section II. Stability and robustness analysis is presented 

in Sections III and IV. Simultaneous stabilization and 

optimal OEF design is addressed in Section V. Design 

examples and conclusion are given in Sections VI and VII. 

II. SEMICONDUCTOR LASER WITH OPTOELECTRONIC 

FEEDBACK 

The dynamics of a SL with OEF (Fig. 1) can be described 

with two equations of the photon number and the carrier 

density. The mathematical model is represented with the 

following rate equations [3]: 
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where 𝑆 is the photon number, 𝐺𝑛 is the gain coefficient, 𝑛 is 

the carrier density, 𝑛𝑡ℎ is the carrier density at threshold, 𝐽 is 

the injected current density, 𝑑 is the thickness of the active 

layer, 𝑒 is the elementary positive charge constant, 𝜉 is the 

feedback strength, 𝑆𝑜𝑓𝑓 is the constant offset in the feedback 

loop, 𝑆𝑠 is the steady state value for the photon number, 𝑛0 is 
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the carrier density at transparency, 𝜏𝑠 is the lifetime of the 

carrier, and 𝜏 is the feedback time delay. See [10] for the 

details of those parameters. 

 
Fig. 1.  Semiconductor laser with optoelectronic feedback. 

Local dynamics of SL with OEF might be investigated 

using linear stability analysis. According to [3], [8] the 

linearization procedure applied to (1) and (2) results in the 

following characteristic equation in variable 𝜆 with one 

delay term 𝑒−
𝜆𝜏

𝑎  
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which can be represented as a delay differential equation 

(DDE) [11] 
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where 𝑎 = 𝑣−0.5, 𝑣 is the ratio of the photon damping rate in 

the cavity to the rate of population relaxation, 𝑐 =

𝑐0/(√1 + 𝛾), where 𝑐0 = √𝑞 − 1, where 𝑞 = (𝜏𝑠 𝐽)/(𝑒𝑑𝐺𝑛 𝑛𝑠 ) 

is the pumping rate, 𝑛𝑠 is steady state carrier density and 𝛾 =

𝜉𝐽/(𝑒𝑑𝑆𝑠 )   is the feedback coefficient. Values of the 

parameters [3] are listed in Table I. 

TABLE I. PARAMETERS OF THE SL [3]. 

Symbol Value Description 

𝑣 103 

the ratio of the photon 

damping rate in the 

cavity to the rate of 

population relaxation 

𝑞 1.5 pumping rate 

𝑎 = 𝑣−0.5 3.1623 ∙ 10−2 
parameter depending 

on the ratio 𝑣 

𝛾 parameter feedback gain 

𝜏 parameter feedback time delay 

𝑐0 = √𝑞 − 1 7.0711 ∙ 10−1 
frequency of relaxation 

oscillations 

𝑐 =
𝑐0

√1 + 𝛾
, 𝛾 ≠ 1 5 ∙ 10−1 

parameter depending 

on the pumping rate 

and the feedback gain 

 

From the stability analysis of (3) boundary of stable and 

unstable oscillations of the laser can be determined (Fig. 2). 

As was reported in [8] this curves correspond to the stable 

and unstable boundaries of the rate equations (1) and (2). As 

will be shown in our further analysis local stability 

boundaries might rapidly change by perturbations of certain 

parameters. Beyond these bounds the laser output is 

subjected to various irregular oscillations, which extend 

from regular pulsing over quasi-periodic pulsing to chaotic 

pulsing, where chaotic pulses have both chaotic peak 

intensities and chaotic pulse intervals.  

 
Fig. 2.  Stability margins with 𝑅𝑥 and 𝐿𝑥 regions. 

To assure stable output laser oscillations despite certain 

perturbations of parameters analysis of robustness must be 

taken into account. 

III. STABILITY ANALYSIS 

Stability of a time delay system can be determined by its 

eigenvalues, which should be located in the open left half 

plane [2], [12]. There are several methods that provide 

numerical algorithms for eigenvalues computation of a time 

delay system [13]–[18]. Stability boundaries concerning 

feedback gain in contrast to time delay were determined 

using an improved version of [14] according to the 

Algorithm I. 

The [14] is based on the computation of all eigenvalues in 

the selected half plane via spectral discretization and on the 

estimation procedure of the desired discretization points. In 

addition, a correction method of derived eigenvalues is used. 

But there is a drawback, the region of the computation must 

be set manually. The larger is the selected region the more 

expensive and time consuming is the computation. On the 

other hand, the computation is unsuccessful if the region 

doesn’t contain any eigenvalues. For determination of the 

stability region of (3) only the rightmost eigenvalue is 

needed. We have improved the algorithm [14] in a manner 

to derive only few rightmost eigenvalues by means of 

automatic selection of computation region. In this way an 

efficient algorithm for determination of stability boundaries 

of (3) has been constructed in MATLAB®. 

Algorithm I. Computation of few rightmost eigenvalues: 

1. Initialize computation region {𝑅(𝜆) ≥ 𝑟|𝜆 ∈ ℂ}, 𝑟 =

−𝜏/3 and execute estimation procedure of discretization 

points 𝑁 of [14]. If 𝑁𝑚𝑖𝑛 = 10 < 𝑁 < 𝑁𝑚𝑎𝑥 = 100 is met 

go to step 4. 

2. If 𝑁 > 𝑁𝑚𝑎𝑥 iteratively decrease region 𝑟 = 𝑟 + 5 and 

save 𝑟1 = 𝑟 until 𝑁𝑚𝑖𝑛 < 𝑁 < 𝑁𝑚𝑎𝑥  or if 𝑁 < 𝑁𝑚𝑎𝑥  save 

𝑟2 = 𝑟. If 𝑁 < 𝑁𝑚𝑖𝑛 iteratively increase region 𝑟 = 𝑟 − 5 

and save 𝑟1 = 𝑟 until 𝑁𝑚𝑖𝑛 < 𝑁 < 𝑁𝑚𝑎𝑥  or if 𝑁 > 𝑁𝑚𝑎𝑥 

save 𝑟2 = 𝑟. If 𝑁𝑚𝑖𝑛 < 𝑁 < 𝑁𝑚𝑎𝑥  is met go to step 4. 

3. Iteratively select 𝑟 = (𝑟1 + 𝑟2)/2 using bisection 

algorithm until 𝑁𝑚𝑖𝑛 < 𝑁 < 𝑁𝑚𝑎𝑥 is met. 

4. Calculate eigenvalues using spectral discretization 

method [14]. 

Using the Algorithm I stability margins for negative 𝛾𝑁 

and positive 𝛾𝑃 gain values of (3) were determined for the 

following set of time delays (Fig. 2 and Fig. 3) 

 0{0.03 0.005 |  0 254}.i i i i        (5) 
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IV. ROBUSTNESS ANALYSIS 

Perturbations of certain parameters might rapidly change 

stability bounds and influence regular SL output oscillation 

to such an extent that it might become chaotic. In what 

follows, maximal allowed perturbations (ℎ) [9] were 

computed for stable region of OEF parameters (𝜏𝑖 , 𝛾𝑖,𝑗) using 

proposed implementation. 

A. Stability Radius 

Maximal allowed perturbations of a time delay system, 

which shift its eigenvalues to imaginary axes, can be 

determined using complex stability radius, which is defined 

by [9] 
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where 𝜇𝛥 is a structured singular value and can be computed 

using the mussv routine in MATLAB®, matrices 𝐌 and 𝐍 

define certain structure of perturbations, 𝜆𝐼 − 𝐀𝟎 −

 ∑ 𝐀𝐢𝑒
−𝜆𝜏𝑖𝑚

𝑖=1  for 𝜆 = 𝑗𝜔 is a characteristic equation of a time 

delay system with system matrices 𝐀𝟎, … , 𝐀𝐦. Applying 

additive perturbations to (4), where ℎ = 𝑚𝑎𝑥{ |ℎ0|, |ℎ1|,

|ℎ2|,   |ℎ3|} <  𝑟𝐶 holds 
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where 𝛿 ∈ [0, 1], results in following matrices: 
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B. Efficient Computation of Stability Radii for the 

Semiconductor Laser 

Computation of numerous stability radii on a 2-D grid 

(Fig. 3) of stabile region is a demanding task due to the 

complex nature of structured singular value problem, which 

in addition needs to be evaluated over an interval of 𝜔 (6). 

The computation was performed over the set (5) and 

following stable sets of feedback gains 
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To reduce the complexity of computation we propose 

Algorithm II. 

Algorithm II. Computation of stability radius: 

1. For each 𝜏𝑖 , 𝛾𝑖,𝑗 compute magnitude 𝑀1 =

‖(𝑗𝜔𝐼 − 𝐴0 −  ∑ 𝐴𝑖𝑒
−𝑗𝜔𝜏𝑖𝑚

𝑖=0 )−1‖
2
on an interval of 𝜔1 =

[0,10𝜋/𝜏𝑖] with step size 𝑠1 = 0.01𝜋/𝜏𝑖. 

2. Extract two thirds of the largest 𝑀1 with corresponding 

𝜔1 as 𝑀2 and 𝜔2. 

3. Compute stability radius 𝑟1 (6) over the 𝜔2 with step 

size of 𝑠1. 

4. When the algorithm stops, rectangle with the largest 𝜏∆ 

is selected and saved, as well as 𝜏𝑐 and 𝛾𝑐. 

 
Fig. 3.  Contours of stability radii plotted for 𝜖𝑛 = {0.2,0.4, … ,1.8,2.0}. 

Step size was constructed as a function of time delay to 

assure appropriate precision also for higher values of time 

delays. With higher delays eigenvalues condense towards 

the origin of the complex plane [2], which results also in 

condensed picks in magnitude. For that reason smaller step 

size is needed. 

Figure 3 shows results of the stability radii for the stable 

region (Fig. 2). The highest levels of stability radii are 

displaced from the center of the stable region. With 

increased values of the stability radii stability margins start 

to narrow until individual connected contours are derived. 

V. SIMULTANEOUS STABILIZATION 

Another important aspect of robustness concerns the time 

delay. As a result of different external influences the time 

delay in the OEF might change and cause instability. 

Figure 3 clearly denotes the reduction of the areas 

surrounded by individual contours when the amounts of 

perturbations increase. The higher are perturbations of 

parameters the more limited become stability bounds and 

the admissible intervals of gains and delays decrease. 

A. Simultaneous Stabilization 

Computation of maximal stabilizable intervals (𝜏∆, 𝛾∆) of 

feedback parameters (𝜏, 𝛾) in contrast to maximal allowed 

parameters perturbations (ℎ(𝜏, 𝛾)) was carried out for all 

contours of stability radii inside of regions of 𝑅1 and 𝐿2 

(Fig. 2). Individual regions are defined as: 
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The goal was to obtain the largest possible rectangular 
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shape inside of each contour (Fig. 3 and Fig. 4). By 

choosing the centred points (𝜏𝑐 , 𝛾𝑐) of such rectangles 

optimal feedback parameters (𝜏𝑜𝑝𝑡 , 𝛾𝑜𝑝𝑡) can be obtained 

which allow bounded parameters perturbations (ℎ) and 

simultaneous stabilization on delay (𝜏∆) and gain intervals 

(𝛾∆) of certain desired size. 

To obtain 𝜏𝑐𝑛,𝑘
, 𝛾𝑐𝑛,𝑘

 and corresponding 𝜏∆𝑛,𝑘
 for each 

contour 𝜖𝑛 and for 𝛾∆𝑛,𝑘
 we propose Algorithm III. 

Algorithm III. Computation of 𝜏𝑐𝑘
, 𝛾𝑐𝑘

 and 𝜏∆𝑘
 intervals 

for 𝛾∆𝑘
= {𝑘0.005|𝑘 = 1,2, … }: 

1. Each contour 𝜖𝑛 = {𝑛0.005|𝑛 = 1,2, … }  of ℎ𝑖,𝑗 was 

extracted, up sampled to delay and gain step size of 

0.0001 and divided into upper and lower set of points. 

2. For each point 𝐴 the corresponding 𝐶, 𝐷 and 𝐵 points 

were found (Fig. 4). 𝐶 was found using a bisection 

algorithm. 

3. The formation of rectangles proceeds until points occur 

inside of the rectangle. Only first time rectangles are 

calculated for all upper points. Next iterations use the 

information of the position of previously selected 

maximal rectangle in Step 4. 

4. When the algorithm stops, rectangle with the largest 𝜏∆ 

is selected and saved, as well as 𝜏𝑐 and 𝛾𝑐. 

 
Fig. 4.  Algorithm III: Out of blue rectangles the red rectangle is chosen 

with maximal interval of delays. 

Figure 5 and Fig. 6 show results of the Algorithm III 

evaluated over contours in region 𝑅1. Figure 5 represents 

inverse dependence of 𝜏∆ and 𝜖𝑛 to 𝛾∆. 

Figure 6 represents 𝜏𝑐, 𝛾𝑐 for which 𝜏∆ and 𝛾∆ at specific 

𝜖𝑛 can be achieved. For higher values of 𝜖𝑛 smaller 

stabilizing intervals can be achieved, which clearly shows 

that it is impossible to obtain maximal robustness of the SL 

and OEF. 

 
Fig. 5.  Each curve represents 𝜏𝛥,𝑘 obtained for specific 𝜖𝑘 belonging to 𝑅1 

for 𝛾∆,𝑘 = {0.01, 0.02, … , 0.49, 0.50} (right to left). 

 
Fig. 6.  𝜏𝑐,𝑘 , 𝛾𝑐,𝑘 values for 𝑅1 depicted for 𝛾∆,𝑘 = {0.01, 0.02,
… , 0.49, 0.50} (down-up). 

B. Interpolation of Families of Curves 

Resulting curves of (𝜏𝑐 , 𝛾𝑐) and (𝜏∆, 𝜖𝑛) can be represented 

by several groups of polynomials, which can be derived 

using curve fitting tool cftools in MATLAB®. 

Family of curves of (𝜏𝑐 , 𝛾𝑐), belonging to region 𝑅1 

(Fig. 6), bounded by the area 𝑇𝑐 ∈ 𝐷1 ∩ 𝐷2 ∩  𝜏𝑐 > 0 ∩ 𝛾𝑐 ≥

0 , where 𝐷1 and 𝐷2 are derived using fourth order 

polynomial fitting, is described as a group of polynomials 
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with polynomial coefficients defined as 

   3 2 1
,3 ,2 ,1 ,0 , i i i i ia b b b b           (13) 

where 3, 2,1,0i  . 𝑇∆(𝛾∆, 𝜖) belonging to 𝑅1, bounded by 

𝑇∆ ∈ 𝐷3 ∩ 𝜖 > 0.07 ∩ 𝜏∆ > 0.01, where 𝐷3 is derived using 

linear line fitting, is described using polynomials 
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In order to achieve accurate fitting we can divide the 

whole family of curves into several groups of polynomials 

(12) or (14). Polynomials (12) and (14) were derived using 

proposed Algorithm IV. 

Algorithm IV. Interpolation of a family of curves: 

1. Family of curves is divided into several groups 

according to 𝛾∆, 𝜖 or 𝛾∆, 𝛾𝑐.  

2. For each group interpolate all curves and save 

coefficients.  

3. Interpolate evolution of individual coefficients of 

polynomials to derive (13) and describe the whole group 

with (12) or (14) respectively. 

C. Correction Algorithm 

Obtained polynomials 𝑇𝑐(𝛾∆, 𝛾𝑐) were used to correct 

corresponding polynomials 𝑇∆(𝛾∆, 𝜖) with the help of the 

Algorithm I and proposed Algorithm V. Correction of each 

polynomial was executed for 15 distinct points. 

Algorithm V. Correction of 𝑇∆(𝛾∆, 𝜖): 

1. Reduce 𝑇∆(𝛾∆, 𝜖) by 0.02 and keep evaluating 

Algorithm I for (7) using data of 𝑇𝑐(𝛾∆, 𝛾𝑐) increasing 

𝑇∆(𝛾∆, 𝜖) by 0.02 till stability is compromised. 
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2. Use bisection algorithm to determine corrected 

maximal �̃�∆ with tolerance of 0.0001.  

The maximal stable delay interval 𝜏∆ was computed for all 

four extreme points in a rectangle. For values of 

uncertainties 𝜖𝑛 all possible combinations of signs of 

individual perturbations had to be taken into account, as 

maximal allowed perturbation is provided as absolute value. 

Obtained corrected curves (�̃�∆, 𝜖) were expressed in terms of 

polynomials �̃�∆ using (14) and Algorithm IV. 

D. Optimal Optoelectronic Feedback Design 

Using simple search routine along derived groups of 

polynomials it is possible to obtain 𝜏𝑜𝑝𝑡 and 𝛾𝑜𝑝𝑡 settings of 

the OEF which meet the criteria of simultaneous 

stabilization on desired intervals 𝜏∆ and 𝛾∆ at specific 

maximal allowed perturbations 𝜖 of the SL parameters. 

VI. OPTIMAL OPTOELECTRONIC FEEDBACK DESIGN 

EXAMPLE 

We consider SL with OEF with uncertain time delay 𝜏 =

0.28 ± 0.05 s, gain uncertainty 𝛾∆ ≥ 0.05 and uncertain 

parameters 𝜖 ≥ 0.2. Let’s find the optimal OEF gain 𝛾𝑜𝑝𝑡 in 

the sense of maximal possible parameters uncertainty 𝜖. 

 
Fig. 7.  Group of polynomials belonging to 𝐿2 fulfilling the required 

criteria. 

 
Fig. 8.  Group of polynomials belonging to 𝐿2 fulfilling the required 

criteria. 

Polynomials �̃�∆(𝛾∆, 𝜖) and 𝑇𝑐(𝛾∆, 𝛾𝑐) which meet required 

criteria in region 𝐿2 are shown in Fig. 7 and Fig. 8 in red. 

Maximal possible 𝜖 = 0.3687 is obtained for 𝛾∆ = 0.05 and 

𝜏∆ = 0.23 s (Fig. 8) at 𝛾𝑜𝑝𝑡 =  −0.0039 and 𝜏𝑜𝑝𝑡 = 0.345 s 

(𝜏1 = 𝜏𝑜𝑝𝑡 − 𝜏∆/2 = 0.23 s, 𝜏2 = 𝜏𝑜𝑝𝑡 + 𝜏∆/2 = 0.46 s, 𝜏 ∈

[𝜏1, 𝜏2]), (Fig. 7). 

Considering region 𝑅1 and the above criteria, �̃�∆(𝛾∆, 𝜖) and 

𝑇𝑐(𝛾∆, 𝛾𝑐) are obtained as depicted in Fig. 9 and Fig. 10 in 

red. Maximal possible 𝜖 = 0.3691 is obtained for 𝛾∆ = 0.05 

and 𝜏∆ = 0.236 s (Fig. 10) at 𝛾𝑜𝑝𝑡 =  0.0075 and 𝜏𝑜𝑝𝑡 = 0.215 

(𝜏1 = 𝜏𝑜𝑝𝑡 − 𝜏∆/2 = 0.1 s, 𝜏2 = 𝜏𝑜𝑝𝑡 + 𝜏∆/2 = 0.33 s, 𝜏 ∈

[𝜏1, 𝜏2]), (Fig. 9). 

 
Fig. 9.  Group of polynomials belonging to 𝑅1 fulfilling the required 

criteria. 

 
Fig. 10.  Group of polynomials belonging to 𝑅1 fulfilling the required 
criteria. 

In this example we have presented two possible solutions 

in terms of the required criteria. The optimal gain setting 

fulfilling all the requirements was achieved for maximal 

uncertainty of 𝜖 = 0.3691 at feedback gain value of 𝛾𝑜𝑝𝑡 =

 0.0075. 

VII. CONCLUSIONS 

In the presented work stability and robustness of the SL 

were studied with special concern devoted to the 

simultaneous stabilization on the intervals of the OEF 
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parameters in contrast to uncertainties of the SL parameters, 

which was evaluated using several algorithms. Improved 

numerical algorithms for computation of stability radius and 

stability boundaries in terms of computation of only few 

rightmost eigenvalues were provided. 

As was shown, amounts of simultaneously stabilizable 

OEF intervals inversely depend on the values of SL 

parameters perturbations, which imply that it is impossible 

to obtain maximal robustness of the SL and the OEF 

parameters. In this manner an optimal OEF might be 

designed considering specific constraints and criteria as 

discussed in provided example. 

Proposed algorithms can be adapted and used for any 

other time delay system. 
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