
ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 19, NO. 10, 2013

1Abstract—The article reports on the upgrading of the FPGA
based isolated word recognition system for real-time tasks. All
recognition system components (except some feature calculation
steps) were implemented using VHDL. Some high precision
calculations were implemented on soft core processor. The
employed Dynamic time warping algorithm was speeded-up
2.8 times by restricting the calculated error matrix size. This
enabled us to reduce the average word recognition time to
12.81 ms. Linear predictive coding, linear predictive coding
cepstral and linear frequency cepstral coefficients feature
analyses were investigated for 100 Lithuanian word
recognition. In speaker dependent experiments linear predictive
coding cepstral analysis gave the highest average recognition
rate of 95 % and the highest robustness to white noise in
speech. 15 dB noise level lowered average recognition rate to
86.2 %.

Index Terms—Cepstral analysis, dynamic time warping,
field programmable gate array, intellectual property core,
isolated word recognition, linear predictive coefficients.

I. INTRODUCTION

Despite of recent software-based Lithuanian speech
recognition [1] and synthesis [2] implementations on
personal computers and servers there is an unaddressed need
of embedded systems for mobile and stand-alone devices,
interactive voice controlled systems, disabled person
equipment, etc. Embedded systems bring in their specific
requirements for speech recognizers: the limited speed of
processing and of memory, the low power consumption.

The recognition of large vocabulary and continuous
speech requires complicated algorithms with huge amounts
of calculations, large quantities of memory [3], [4]. This can
result in enlarged power consumption, longer recognition
time and higher recognition error rate.

Many automatic speech recognition systems for the
languages of minor use are now developed. Presented in [5]
Croatian speech recognizer uses acoustic models based on
context-dependent triphone hidden Markov models (HMM)
and phonetic rules. Experimentally it is shown that the
system can be used for speech recognition with word error
rate below 5 %. In [6] a speaker independent speech

Manuscript received February 27, 2013; accepted June 09, 2013.
This research was funded by a grant (No. MIP-092/2012) from the

Research Council of Lithuania.

recognition system for Estonian language is described.
Clustered triphones with Gaussian mixture components are
used there for acoustic modelling. The error rate of the
system is improved to 27.3 %. In [7] Finnish speech
recognition based on sub-word decoders is presented. The
pursued task was to find the most probable HMM state
sequence. The word error rate there is decreased up to 32 %
for very large vocabulary. For Czech speech recognition in
[8] investigation on usability of publicly available n-gram
corpora to create Czech language models is carried out. The
experiments on large test data illustrate the impact of Czech
as highly inflective language on the perplexity. The best
achieved average error rate is 20 %. The multilingual
Italian – Lithuanian small vocabulary speech recognition is
implemented using multilingual transcription in [9]. The
average recognition accuracy of ten spoken numbers for the
Lithuanian language is 93 % and for the Italian – 98 %. It is
important to acknowledge that here analysed all speech
recognizers are implemented in software.

In some cases the robustness and correctness of
recognition, together with the low power consumption are
preferred against the size of the vocabulary [10]. Then the
natural choice is an isolated word recognition approach
leading to lower hardware requirements: much smaller
vocabulary (less memory), simpler classification (lower
speed and power consumption), potentially higher
recognition rate (correctness), and at the same time an ability
to use advanced noise cancellation (robustness) [11].

The field programmable gate array (FPGA) platform lets
to employ the parallelization and pipelining technique in
speech recognition. It is a flexible architecture to develop
systems in comparison to implementations on the ASIC
devices. The embedded processor-based solutions on the
market have an average 80 % recognition rate and limited
size of the dictionary: 32 (EasyVR [12]) or 75 (NLP [13])
commands. The main issue in such recognizer is to ensure
real-time requirements for the feature extraction (especially
in comparison stages). Contrary for this approach in FPGA
[3], [4], [10], [14] or GPU [15], [16] implementation feature
extraction and matching processes can run independently.

First softcore implementations on Virtex-4 family FPGA
of Lithuanian isolated word recognizer were done by this
article authors in [17]. The use of soft-core processor

Upgrading FPGA Implementation of Isolated
Word Recognition System for a Real-Time

Operation
T. Sledevic1, G. Tamulevicius1, D. Navakauskas1

1Department of Electronic Systems, Vilnius Gediminas Technical University,
Naugarduko St. 41–422, LT-03227 Vilnius, Lithuania

dalius.navakauskas@vgtu.lt

http://dx.doi.org/10.5755/j01.eee.19.10.5907

123

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 19, NO. 10, 2013

Microblaze together with intellectual property (IP) cores for
signal processing enabled us to accelerate word recognition
process by 1.55 times [18], [19], but it was still not enough
for a real-time operation.

The paper presents upgraded FPGA implementation of
isolated word recognition system for a real-time operation.
In Section II isolated word recognition algorithm and a new
way of its parallel execution are presented. In Section III
numerous original soft-core implementations of individual
recognition stages are described in details. In Section IV
results on extensive experimental investigation of created
isolated word recognition system working in a real-time are
summarized. General conclusions are stated in Section V.

II. ISOLATED WORD RECOGNITION PROCEDURE

The proposed in [18] and adopted here isolated word
recognition algorithm (Fig. 1) is shortly described below.

Fig. 1. Isolated word recognition algorithm.

1. When system is turned on the audio chip is configured
to sample the incoming speech signal at 44100 Hz. If real-
time command recognition is not selected then system stays
in idle mode and is waiting for the press of start button;

2. After the start button is pushed speech signal is
quantized in 8 bits and saved in four memory buffers
coherently. Each buffer contains 256 data samples of speech
signal (23.22 ms duration). There is no need to save the
whole isolated word signal because features are extracted in
real-time immediately after last voice signal sample is
written into buffer. For the testing purposes there is an
option to read the speech signal directly from memory card;

3. Because of buffers partial overlapping speech features
are extracted every 11.61 ms. Three feature sets can be
alternatively extracted: linear predictive coefficients (LPC);
linear predictive cepstral coefficients (LPCC); linear
frequency cepstrum coefficients (LFCC). The 12th order
linear prediction is calculated by Levinson-Durbin recursion,
while cepstrum coefficients are estimated by

 2real FFT log FFT ,C X (1)

where C – cepstrum coefficients vector; X – discretized
speech signal vector; FFT – fast Fourier transform;

4. Comparison of two feature sequences is implemented
through dynamic time warping algorithm (DTW) [2], [17],
[18]. DTW compares words with duration up to 1.5 s;

5. Each vector in dictionary can be updated by
pronouncing a new word in the microphone and saving the
signal at the desired command address. The dictionary is

implemented in FPGA internal block RAM. Thus the initial
dictionary is programmed together with FPGA content file;

6. After the test word features are compared with
reference features, a reference number of the best matching
word is displayed on LCD.

The steps 2–4 are performed in a parallel manner. The
system constantly captures speech, extracts features and
compares them with activating reference features saved in
address No. 0. If activation word is recognized, then system
generates a short acoustic signal. Afterwards speaker must
pronounce a command.

III. IP CORE IMPLEMENTATIONS

The steps of isolated word recognition algorithm are
implemented in hardware using VHDL. Soft-core processor
is used only for Levinson-Durbin and LPCC calculation. The
whole algorithm is divided into modules (see Fig. 2).

Fig. 2. Block diagram of isolated word recognition.

The speech signal is sampled at 44100 Hz intentionally.
11025 Hz sampling rate is achieved using mean filter with
the length of 4 samples. Four bank memories are used to
save 8 highest bits of the signal in partially overlapped
frames. The address counter controls in which bank and
address the incoming data must be stored. At the end of
frame the signal from one bank is directed to Hanning
window module. The linear prediction and cepstrum
calculations are implemented in different files. LPC are
calculated using the autocorrelation and the recursive
Levinson-Durbin algorithms. LPCC are recalculated from
LPC. The LFCC are calculated using two FFT, ABS and
LOG2 units. The 12 highest bits forms feature value. One
reference word feature array contains 128 × 12 × 12 b. The
DTW algorithm is used for comparison of feature sequences
(words). For each compared word DTW outputs a 28 b
width matching error. Minimal error finding unit compares
incoming errors one-by-one and refreshes the minimal value
corresponding to the ordering number of the reference word
in the dictionary. Additional error threshold value is used in
order to prevent misidentification of activator.

Module 1. The 12th order autocorrelation algorithm is

124

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 19, NO. 10, 2013

implemented using 13 shift registers, as shown in Fig. 3.

Fig. 3. Implementation of autocorrelation, Levinson-Durbin and LPCC
calculation algorithms.

Each element of this register is accessible in parallel by
13 DSPs slices. The multiplication result is accumulated
until the last byte No. 256 reaches the shift register.
Autocorrelation coefficients r(i) are stored in dual port
BRAM buffer via port A. This memory is used to exchange
the data between hardware and software parts of the system.
For the soft-core processor the autocorrelation coefficients
are accessible via port B. At the first iteration of Levinson-
Durbin algorithm the values of energy coefficient E, first
reflection coefficient k(1) and first LPC are initialized. For
each ith iteration energy coefficient E is updated and used as
divisor for calculation of reflection coefficient k(i). The
steps 2–4 are repeated 12 times giving the 12th order LPC.
At step 5 the LPCC are calculated from LPC. The soft-core
processor calculates both types of coefficients and returns
them to BRAM buffer for storing in the dictionary.

Autocorrelation implementation can be parallelized, but
Levinson-Durbin algorithm is fully sequential. Therefore it
can be described by finite state machine (FSM, see Fig. 4).

Fig. 4. Finite state machine of LPC and LPCC calculation algorithm.

FSM has 9 states that are used to synchronize the
calculation process. Grey rectangles in FSM marks the
additional signals used for communication between
hardware and software. Signal r_done starts interrupt
process of recursive Levinson-Durbin algorithm. Signal
features_c allows switching between LPC and LPCC
analysis. Signal save_done puts soft-core processor into a
sleep mode (features are saved in the dictionary).

Module 2. LFCC extraction (Fig. 2) is based on cepstrum
calculation (1). Spectrum calculation uses Radix-2 based

FFT core [20]. Fast log2 operation is implemented using
binary mask filters (Fig. 5). When incoming data match
certain mask, LOG2 module returns number of matched
filters, which represent rounded integer value of log2.

0010000000000000
0100000000000000

0000101001001011
. . .

0000000100110100
0000000001010110
0000011110101010

. . .

...

256 samples

12 11
7 9

...
1000000000000000

0000000000000000
...

LOG2 module
Binary mask filter

ABS module FFT module

Fig. 5. Implementation of fast log2 operation.

Module 3. The big issue in hardware is the
implementation of sequential algorithm, which requires
accessing the data located in memory at variant
addresses [21]. DTW algorithm is sequential by nature. The
principle used to fill the error matrix is shown in Fig. 6. The
features of test word are located on x axis, reference features
are located on y axis.

Fe
at

ur
es

fr
om

di
ct

io
na

ry

Fig. 6. The principle of filling the error matrix.

At the first step error values e(x) are calculated for first
line in positive x direction. At the second step errors e(y) in
first column are calculated. Finally the error in rest of the
area is estimated using 2 × 2 size sliding filter (Fig. 6). Filter
moves from left to right and from bottom to top until reaches
last error matrix element located at address (127, 127).
Using this filter the minimum value of 3 neighbours marked
in grey is added to Euclidean distance for element e and
saved in error matrix memory at e address. IP core
implementation of this procedure is shown in Fig. 7.

Fig. 7. Implementation of Euclidean distance and error matrix filling.

The block diagram presents fast Euclidean distance
estimation using 11 summations, 12 subtractions,
12 multiplexers and one square root core. The square root
core has pipelined implementation. The calculation of
Euclidean distance dE is done per one clock cycle.

125

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 19, NO. 10, 2013

The difference between vectors is estimated by

12 2

E w d
1

() () ,
i

d c i c i

 (2)

where dE – Euclidean distance; cw(i) – i-th LPC, LPCC or
LFCC in one word feature memory; cd(i) – i-th LPC, LPCC
or LFCC in dictionary.

To ensure synchronous filling of error matrix the data
from dictionary, one word buffer and error matrix are read
out in parallel. Because the BRAM memory has one clock
reading latency the valid address must be prepared before
accessing the data. Therefore the address counter is
implemented as separate process independent of the error
calculation process. These two address and error estimation
processes runs synchronous. The advantage of hardware
implementation is the pipelined calculation of error matrix.
At each rising edge of clock new error e value is calculated
and stored in error matrix memory immediately.

The back-path searching algorithm uses the same 2 × 2
size sliding filter to find a path with minimum error from
(127, 127) to (0, 0). The DTW algorithm is repeated for
every reference feature sequence in the dictionary. The
minimal error path value indicates the recognized word in
the dictionary. The threshold can be applied additionally for
the minimal error value in order to reject erroneously
recognized word. The back-path searching area is
constrained (Fig. 8).

Fig. 8. The principle of the border constraints used in the error matrix.

The grey triangles mark the region where the error is not
computed. Only 38 % of error matrix is used. Such
restriction speeds-up the DTW calculation up to 2.6 times
without negative influence on recognition accuracy. The
acceleration value is obtained by comparing the recognition
results for the DTW without and with border constraints.

IV. RESULTS

The implemented Lithuanian word recognition system was
tested experimentally. Isolated words were given from
computer as *.wav signals via memory card to FPGA board.
All recognition experiments were speaker dependent. The
records of isolated words with narrowband noise were
recorded in office environment. 100 different words were
pronounced 4 times by 5 male and 5 female speakers. The
system was trained using the first session of records and the
rest 3 sessions of records were used for testing. The
robustness of feature systems was tested adding white noise
to original records obtaining 30 dB and 15 dB signal-to-

noise ratio (SNR) values. The recognition rates for all
speakers at different SNR values are given in Table I. Each
value in the table is obtained by averaging recognition rates
for one (Mi – male, Fi – female) speaker over 3 sessions.

TABLE I. ISOLATED WORD RECOGNITION RATES (IN PERCENTS).
Features extraction method LFCC LPCC LPC

Speaker i Mi | Fi Mi | Fi Mi | Fi

Original record with
narrowband noise

1
2
3
4
5

99 | 95
97 | 86
91 | 95
84 | 99
89 | 95

99 | 97
95 | 89
90 | 98
77 | 99
79 | 92

91 | 93
85 | 87
73 | 92
68 | 97
57 | 82

Record with white noise,
SNR = 30 dB

1
2
3
4
5

96 | 95
94 | 85
79 | 93
83 | 98
91 | 94

94 | 97
91 | 85
77 | 93
84 | 99
88 | 90

79 | 89
82 | 81
57 | 92
66 | 95
64 | 81

Record with white noise,
SNR = 15 dB

1
2
3
4
5

91 | 67
72 | 65
65 | 72
69 | 81
75 | 67

93 | 87
85 | 74
72 | 83
79 | 98
77 | 89

82 | 72
64 | 66
48 | 73
57 | 87
56 | 66

The recognition rate highly depends on individual speaker
pronunciation. Male M1 has highest recognition rate for all
tested male speaker over all used features extraction
methods and SNR values. Female F4 speaker has relatively
highest rate over all tested female speakers. The recognition
rate for speakers M1 and F4 is decreasing relatively slower in
comparison with other speakers. This was influenced by
articulation of separate word and by velocity of speaker
pronunciation. The misrecognitions in most cases appear for
words with similar constellation of phonemes:
“dalis → šalis”. “visas → viskas”, “įmonė → priemonė”,
“kaip → kiek”, “laikas → vaikas”, “kartas → darbas”,
“tirti → dirbti”. Therefore elimination of similar words from
recognizer dictionary would give higher recognition rate in
our case.

The summarized recognition rates with confidence
intervals (in brackets) for all feature systems and SNR
values are given in Table II. The rates are averaged
separately for 5 male and 5 female speakers. The confidence
intervals were estimated with the confidence level of 95 %.
The highest average recognition rate of 95 % is achieved for
original records of female speaker using LPCC. The LFCC
gives highest recognition rate of 92 % for male speaker
while using original record with narrowband noise. Results
are graphed in Fig. 9.

TABLE II. AVERAGE RECOGNITION RATES (IN PERCENTS).
Features extraction

method
LFCC
M, F

LPCC
M, F

LPC
M, F

Original record with
narrowband noise

92.0
(–1.49 +1.32)

94.0
(–1.32 +1.15)

88.0
(–1.76 +1.61)

95.0
(–1.23 +1.05)

74.8
(–2.31 +2.20)

90.2
(–1.62 +1.46)

With white noise,
SNR = 30 dB

88.6
(–1.72 +1.57)

93.0
(–1.41 +1.24)

86.8
(–1.82 +1.68)

92.8
(–1.43 +1.26)

69.6
(–2.44 +2.35)

87.6
(–1.78 +1.63)

With white noise,
SNR = 15 dB

74.4
(–2.32 +2.21)

70.4
(–2.42 +2.33)

81.2
(–2.08 +1.96)

86.2
(–1.86 +1.71)

61.4
(–2.60 +2.54)

72.8
(–2.36 +2.26)

The recognition rates hit in the overlapped confidence
intervals while using LFCC and LPCC features for both

126

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 19, NO. 10, 2013

male and female speaker at original record and record with
30 dB SNR. The LPCC gave the highest robustness in
comparison with LPC and LFCC features at 15 dB SNR.
LPC demonstrated the lowest recognition accuracy during
all experiments.

Re
co

gn
iti

on
Ra

te
(%

)

Fig. 9. The average recognition rate of word pronounced by male (M) and
female (F) speaker at different SNR values using LFCC, LPCC and LPC as
features extraction methods.

The FPGA resource utilization rate used in system is
shown in Table III. LPC and LPCC feature extraction
algorithms were implemented on soft-core processor.
Therefore it uses 3 DSPs slices only for sequential signal
processing. Soft-core uses 8 BRAMs to store instructions
code and one BRAM to exchange data with the hardware
part of system. Error matrix utilizes 18 BRAMs in DTW
module. 100 BRAMs are used to store word feature vectors.
12 DSPs slices are used for implementation of fast Euclidean
distance calculation.

TABLE III. FPGA UTILIZATION RATE.
Module SLICEs LUTs BRAMs DSPs

Soft-Core
(LPC, LPCC) 1980 (13 %) 2503 (8 %) 9 (5 %) 3 (2 %)

LFCC 1572 (10 %) 2779 (9 %) 14 (7 %) 9 (5 %)
DTW 2567 (17 %) 4365 (14 %) 18 (9 %) 12 (6 %)
Others 1550 (10 %) 2808 (9 %) 100 (52 %) 0 (0 %)

The relative utilization of FPGA modules is shown in
Fig. 10. Only 50 % of FPGA logic memory (SLICEs) is
used. The remaining amount of the memory can be used to
duplicate few DTW units with the aim to make the
comparison process at least 3 times faster.

%10 50 1000

Soft-Core

SLICEs

LUTs

BRAMs

DSPs

LFCC DTW Others Unused

13

8

5

2

10

9

7

5

17

14

9

6

10

9

52

87

27

60

50

Fig. 10. The relative utilization of FPGA modules.

The duration of signal processing in main modules is
shown in Table IV. In order to run recognition in real-time
the feature extraction delay must be less than 11.61 ms. All
feature extraction modules enable real-time operation.

Duration of LPCC calculation is more than 50 times longer
in comparison with LFCC calculation time. The reason is the
linear prediction implementation on soft-core processor. The
autocorrelation, LFCC and DTW modules run on 50 MHz,
soft processor core runs on 100 MHz clock frequencies.

TABLE IV. SIGNAL PROCESSING DURATION.

Module Pulses Clock,
MHz Delay, μs 11610/Delay

LFCC 3320 50 66.4 174.85
Autocorrelation 270 5.4 2150.00

Levinson-Durbin 166207

100

1662.1 6.99
LPC 166477 1667.5 6.96

LPC → LPCC 168201 1682.0 6.90
LPCC 334678 3349.5 3.46

One DTW 16650 50 333.0 34.86
One DTWc 6404 128.1 90.63

The time-line diagram of feature extraction and
comparison stages is shown in Fig. 11. The gray and white
rows mark the amount of time needed for FPGA-based and
CPU-based calculations respectively (Matlab was used as
software running on personal computer with 50 % usage of
3 GHz CPU). CPU-based LPCC and LPC extraction is more
than 10 and 5 times faster respectively. The higher
calculation speed is strongly influenced by 30 times higher
CPU clock frequency. The advantage of FPGA against CPU
is observed in LFCC and DTW calculations. FPGA-based
LFCC runs 1.5 times faster than CPU-based because of
simplifications in logarithm and FFT core employment.
FPGA-based DTW and DTWc calculation is speed-up more
than 280 times in comparison with same algorithm
implemented in Matlab.

128.1 μs for one DTWc

t, μs

11610 μs

333.0 μs for one DTW

1000 5000 10000

66.4 μs for LFCC

1667.5 μs for LPC

3349.5 μs for LPCC

0

313.0 μs on CPU

307.0 μs on CPU

102.0 μs on CPU

94100 μs on CPU

36320 μs on CPU

Fig. 11. The time-line diagram of feature extraction and comparison stages
based on FPGA and CPU.

The delay of signal processing is very convenient to
present in time-line, as shown in Fig. 12.

Fig. 12. Time-line of LFCC, LPC, LPCC and DTW calculation.

Calculation of LFCC features for one word takes 66.4 μs.

127

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 19, NO. 10, 2013

This is 174.8 times faster than real-time recognition requires.
LPCC feature extraction takes 3349.5 μs and it is 3.46 times
faster that real-time operation requirement. Therefore one
soft-core processor can be used for LPCC analysis of signals
from 3 different data channels simultaneously. The delays
for one DTW and DTWc process are 333.0 μs and 128.1 μs
respectively. In non real-time mode the whole set of
reference words are sequentially analyzed by DTW (or
DTWc) algorithm and it takes 33.30 ms (12.81 ms in DTWc

case). This time-span does not enable real-time recognition
because only 34 DTW (or 90 DTWs) comparisons will be
performed in 11.61 ms. In order to make system more
applicable and usable with larger dictionaries it is proposed
to use activation word to initiate the recognition process.
Recognition of this activator will require only one DTW
comparison in real-time. When activator is recognized the
system captures pronounced utterance and recognizes it in
non-real-time mode.

The fastest version of software-based comparison
process [18] is speeded-up 403 times using DTW algorithm
and 1049 times using DTWc algorithm. LFCC feature
extraction is speeded-up 160 times. The average recognition
rate is improved by 1 % (up to 94 %) using LFCC and by
2 % (up to 95 %) using LPCC features. Other researchers
declare similar recognition rates of 90–93 % on hardware-
based speech recognizers [3], [4], [10], [14], [22].

V. CONCLUSIONS

FPGA implementation of isolated word recognition
system was upgraded for real-time operation. Comparing
with previous recognition system implementation feature
extraction process is speeded-up 160 times, word
comparison process – 403 times. The comparison process is
accelerated 2.6 times additionally by employing constraints
in calculated error matrix thus giving 1049 times faster
comparison process. Further acceleration is achieved
implementing square root operation per one clock cycle. The
final achieved speed of word comparison is 7800 words per
second.

The implemented system was tested using Lithuanian
language words. The system attained 95 % accuracy using
linear predictive coding cepstral analysis. It was more robust
to white noise and outperformed linear frequency cepstral
coefficients and linear predictive coding analysis giving
86.2 % recognition rate at 15 dB signal-to-noise ratio.
Higher recognition accuracy can be expected by establishing
optimal analysis parameters, optimizing dictionary structure.

The dynamic time warping with constrains module can be
additionally accelerated by improving hardware architecture
with the aim to increase clock frequency. The future work is
to increase the dictionary size and to duplicate few dynamic
time warping cores with the aim to take advantage of speed.

REFERENCES

[1] R. Lileikyte, L. Telksnys, “Quality estimation methodology of speech
recognition features”, Elektronika ir elektrotechnika (Electronics and
Electrical Engineering), vol. 110, no. 4, 2011, pp. 113–116.

[2] G. Pyz, V. Simonyte, V. Slivinskas, “Lithuanian speech synthesis by
computer using additive synthesis”, Elektronika ir elektrotechnika
(Electronics and Electrical Engineering), vol. 18, no. 8, 2012, pp.
77–80.

[3] J. Choi, K. You, W. Sung, “An FPGA implementation of speech
recognition with weighted finite state transducers”, in 2010 IEEE Int.
Conf. on Acoustics, Speech, and Signal Processing, 2010, pp. 1602–
1605. [Online]. Available: http://dx.doi.org/10.1109/ICASSP.
2010.5495538

[4] R. Veitch, L. M. Aubert, R. Woods, S. Fischaber, “Acceleration of
HMM-based speech recognition system by parallel FPGA Gaussian
calculation”, in 2010 VI Southern Programmable Logic Conf., Mar.
2010, pp. 197–200. [Online]. Available:
http://dx.doi.org/10.1109/SPL.2010.5483010

[5] S. Martincic-Ipsic, M. Pobar, I. Ipsic, “Croatian large vocabulary
automatic speech recognition”, Automatika, vol. 52, no. 2, 2011, pp.
147–157.

[6] P. Sojka, I. Kopecek, K. Pala, “Large vocabulary continuous speech
recognition for Estonian using morphemes and classes”, Lecture
Notes in Computer Science, Berlin: Springer, 2004, pp. 245–252.

[7] T. Hirsimaki, M. Kurimo, “Decoder issues in unlimited Finnish
speech recognition”, in Proc. NORSIG’04, 2004, pp. 320–323.

[8] V. Prochazka, P. Pollak, J. Zdansky, J. Nouza, “Performance of
Czech speech recognition with language models created from public
resources”, Radioengineering, vol. 20, pp. 1002–1008, Dec. 2011.

[9] R. Maskeliunas, A. Esposito, “Multilingual Italian – Lithuanian small
vocabulary speech recognition via selection of phonetic
transcriptions”, Elektronika ir elektrotechnika (Electronics and
Electrical Engineering), vol. 121, no. 5, 2012, pp. 85–88.

[10] G. Zhang, J. Yin, Q. Liu, Ch. Yang, “A real-time speech recognition
system based on the implementation of FPGA”, in Proc. Cross Strait
Quad-Regional Radio Science and Wireless Technology Conf., July
2011, pp. 1375–1378. [Online]. Available: http://dx.doi.org/10.1109/
CSQRWC.2011.6037220

[11] L. Stasionis, A. Serackis, “Selection of an optimal adaptive filter for
speech signal noise cancellation using C6455 DSP”, Elektronika ir
elektrotechnika (Electronics and Electrical Engineering), vol. 115,
no. 9, 2011, pp. 101–104.

[12] A. Chakravarty, Speech recognition toolkit for the Arduino, 2013.
[Online]. Available: http://arjo129.github.com/uSpeech/

[13] Natural Language Processor, Sensory, 2010. [Online]. Available:
http://www.sensoryinc.com/products/NLP-5x.html

[14] S. T. Pan, C. C. Lai, B. Y. Tsai, “The implementation of speech
recognition systems on FPGA-based embedded systems with SoC
architecture”, Int. Journal of Innovative Computing, Information and
Control, vol. 7, no. 11, 2011, pp. 6161–6175.

[15] D. Sart, A. Mueen, W. Najjar, V. Niennattrakul, E. Keogh,
“Accelerating dynamic time warping subsequence search with GPUs
and FPGAs”, in 2010 IEEE 10th Int. Conf. on Data Mining, Dec.
2010, pp. 1375–1378.

[16] Y. Zhang, K. Adl, J. Glass, “Fast spoken query detection using lower-
bound dynamic time warping on graphical processing units”, in 2012
IEEE Int. Conf. on Acoustics, Speech and Signal Processing, March
2012, pp. 5173–5176. [Online]. Available: http://dx.doi.org/
10.1109/ICASSP.2012.6289085

[17] V. Arminas, G. Tamulevicius, D. Navakauskas, E. Ivanovas,
“Acceleration of feature extraction for FPGA based speech
recognition”, in Proc. SPIE 7745, Photonics Applications in
Astronomy, Communications, Industry, and High-Energy Physics
Experiments 2010, pp. 774511–774511-6. [Online]. Available:
http://dx.doi.org/10.1117/12.872081

[18] G. Tamulevičius, V. Arminas, E. Ivanovas, D. Navakauskas,
“Hardware accelerated FPGA implementation of Lithuanian isolated
word recognition system”, Elektronika ir elektrotechnika
(Electronics and Electrical Engineering), vol. 99, no. 3, 2010, pp.
57–62.

[19] E. Ivanovas, “Development and implementation of means for word
duration signal processing”, Ph.D. dissertation, Dept. of Electronic
Systems., Vilnius Gediminas Technical Univ., Vilnius, 2012.

[20] Fast Fourier Transform Logicore, Xilinx, 2011. [Online]. Available:
http://www.xilinx.com/support/documentation/ip_documentation/xfft
_ds260.pdf

[21] D. Mihhailov, A. Sudnitson, V. Sklyarov, I. Skliarova, “Acceleration
of recursive data sorting over tree-based structures”, Elektronika ir
elektrotechnika (Electronics and Electrical Engineering), vol. 113,
no. 7, 2011, pp. 51–56.

[22] O. Cheng, W. Abdulla, Z. Salcic, “Hardware-Software Codesign of
Automatic Speech Recognition System for Embedded Real-Time
Applications”, IEEE Trans. on Industrial Electronics, 2011, pp. 850–
859. [Online]. Available: http://dx.doi.org/10.1109/
TIE.2009.2022520

128

