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1Abstract—The real-time operating wind turbine power curve
(WPC) of a wind turbine generator (WTG) is not completely
identical to a WPC provided by the manufacturer because of
various factors. In order to obtain an accurate WPC model that
can consider various factors, this paper improves a bisecting
k-means clustering algorithm. The improved clustering
algorithm is used for partitioning the measured data into a
certain number of groups, which can be expressed in their
centroids. The interpolation method based on the polynomial is
carried out for modelling a WPC of WTG. The modelled WPC is
applied to the reliability analysis of the generating systems with
a wind farm. The results show that the accuracy of the linear
interpolation is higher than that of quadratic interpolation and
cubic spline interpolation when there are a relatively large
number of clusters.

Index Terms—Wind turbine power curve, bisecting k-means
clustering, interpolation, wind farm, reliability analysis.

I. INTRODUCTION

Wind energy is a clean and renewable energy source, and it
is also the world’s fastest growing energy resource [1]–[2].
Because of the stochastic and intermittent nature of wind
speed, an accurate prediction of wind power is difficult
[3]–[4]. The measured wind turbine power curve (WPC) of a
wind turbine generator (WTG) in a specific wind farm is
different from a WPC provided by a WTG manufacturer
[5]–[6].The possible difference may be because of various
factors, such as the wake effect, air density, barometric
pressure, temperature variations, clouds, and rain. However,
some factors might not be accurately included in a
mathematical model for calculating the power output of a
WTG [6]. Therefore, in order to calculate the power output of
a WTG under a given wind condition and consider the impact
of the complex environmental factors, the historical wind data
(including wind speed and wind direction) and the
corresponding power output data of a WTG in a real wind
farm can be used for modelling a new WPC of a WTG.

The difference between a WPC provided by a WTG
manufacturer and an empirical WPC measured from a real
wind farm has been analysed [5]–[6]. In order to improve the
short-term wind power prediction, four direction-dependent
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WPC models for different wind direction ranges have been
built on the basis of the measured wind data of a real wind
farm [5]. A statistical forecasting system is described in [6]
for the short-term prediction of wind energy production on the
basis of the adaptive combination of alternative dynamic
models.

Considerable work has been done for the development of
WPC models for the monitoring and forecasting of wind
power. In [7], four data-mining approaches for monitoring
WPC are compared. This comparison shows that the adaptive
neuro-fuzzy-interference system model has the best
performance among the analysed approaches. In [8], a
probabilistic model of WPC for monitoring purposes based
on the copulas theory is developed, and the copula function is
used for dealing with the complexity of the relationship
between the wind speed and the wind power. Parametric and
nonparametric models of WPC have been developed in
[9]–[11] aiming to obtain accurate models for the online
monitoring and forecasting of wind power. In [12], existing
WPC models, such as polynomial power curve, exponential
power curve, cubic power curve, and approximate cubic
power curve, have been compared to the manufacturer’s
power curve. In [13], a nonlinear formula for approximating
the manufacturer’s WPC is proposed on the basis of the
interpolation method; the parameters in this formula can be
analytically determined. However, the WPC models in
[12]–[13] do not consider the environmental factors. In [14],
three discrete operational WTG curves (i.e., the power curve,
the rotor curve, and the blade pitch curve) are introduced for
monitoring a wind farm’s performance, and a k-means
clustering is applied. In [15], three different machine learning
models are used for estimating the relationship between the
wind speed and the power output of a wind farm, and an
equivalent power curve model of an entire wind farm under
normal operating conditions is built for detecting the
anomalous functioning conditions of the wind farm.

The measured power output of WTG in a real wind farm is
the real power that synthesizes the impact of complex
environmental factors. Therefore, in order to incorporate the
impact of complex factors, a WPC model based on an
improved bisecting k-means clustering algorithm and the
interpolation method is presented in this paper. As the wind
speed is the dominant factor among the factors, the measured
wind speed and the power output data as two-dimensional
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coordinate points will be clustered into several points on the
basis of the Euclidean distance. However, the layout of wind
farm from which measured data are obtained is constant.
Because the wake effect in different layouts is not the same,
wake model should be independently considered in order to
apply the proposed model to a wind farm with an arbitrary
layout. Thus, the wake model will be built for accurately
calculating the power output of a wind farm. An analytical
WPC formula can be constructed on the basis of the method
proposed in this paper. The proposed WPC model will be
applied to the reliability analysis of generating systems with
the integration of a wind farm.

II.PROPOSED TECHNIQUE

A. Improved Bisecting k-means Clustering Algorithm
Data mining is an automatic or semiautomatic process of

extracting valuable information from large amounts of data
[16]–[17]. In recent years, data mining has attracted a
considerable amount of attention from the information
industry and the society, because of the wide availability of
huge amounts of data and the imminent need for turning such
data into useful information and knowledge [18]. Clustering
analysis is a data-mining technique used for partitioning data
objects into a certain number of groups [17]. The partitioned
objects within a group are similar to one another and different
from the objects in the other groups. Further, the greater the
similarity within a group and the greater the difference
between groups, the better or more distinct is the clustering
[19].

Fig. 1. Clustering processes of SKMC.

Fig. 2. Clustering processes of BKMC.

The standard k-means clustering algorithm (SKMC) is one
of the best-known and most popular algorithms used in
clustering, and it seeks an optimal partition of the data by
using different criteria [20]–[21]. However, the results
obtained from the SKMC highly depend on the initialization
of the clustering parameters; in other words, different
initializations may produce different results. In order to
overcome the disadvantage of SKMC, a bisecting k-means
clustering algorithm (BKMC) is proposed in [22]. However,
there is room for improvement of the BKMC. In order to
describe an improved bisecting k-means clustering algorithm
(IBKMC), the clustering processes of SKMC and BKMC are
summarized below, and the processes are illustrated in Fig. 1
and Fig. 2, respectively, where the points with circle shape

represent a set of data that need to be clustered and the points
with star shape represent the centroids of the groups.

Finding k groups by using the SKMC algorithm:
Step 1) Select randomly k points as the initial centroids

(initialization).
Step 2) Assign all points to the closest centroid, and

recalculate the centroid of each cluster.
Step 3) Repeat Step 2) until the centroid of each group

remains constant.
Finding k groups by using BKMC:
Step 1) Select a group to split.
Step 2) Assign all points that belong to the selected group

to two groups using SKMC.
Step 3) Repeat Step 2) until the centroids of two groups

remain constant.
Step 4) Repeat Steps 1), 2), and 3) until k groups are

formed.
Assume that all points on a plane need to be partitioned into

k groups. SKMC initially needs to randomly select k
centroids. However, BKMC initially splits all points into only
two groups and then, continues to select one group on the
basis of a criterion function to split until k groups are
constructed.

Each split based on BKMC assigns only the points from the
selected group into two new groups. However, some points in
the previously split groups may have a better similarity to a
new group, but the points that belong to the previously split
groups will not assigned again on the basis of BKMC.
Therefore, the paper presents an IBKMC algorithm based on
SKMC and BKMC. Assume that a possible result is obtained
using BKMC, as shown in Fig. 3(a). However, if IBKMC is
conducted, the potential result shown in Fig. 3(b) may be
formed. It can be seen from Fig. 3 that three points and one
point in group 1 shown in Fig. 3(a) are further assigned to
group 2 and group 3, respectively, as shown in Fig. 3(b), and
the centroids of the groups are also changed.

Group 1

Group 2

Group 3

Group 1

Group 2

Group 3

(a) Result based on BKMC (b) Result based on IBKMC

Group 1

Group 2

Fig. 3. Comparison of results of BKMC and IBKMC.

In this paper, the wind speed and the corresponding power
output of WTG as a coordinate point can always be depicted
in a Cartesian coordinate system. The x axis represents the
wind speed, and the y axis represents the power output.
Euclidean distance will be used for representing the distance
between a point Qji(vji, pji) and its centroid Mj(mvj, mpj), where
j represents group j and i represents point i in group j. The
values of mvj and mpj can be calculated as follows:
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where Nj denotes the number of points in group j.
The root mean square error (RMSE) for group j, designated

as RMSEGj, as a criterion function is used for selecting a group
that needs to be split

   2 2

1
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Gj ji vj ji pj
ij

RMSE v m p m
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 (3)

The entire clustering error for a different cluster group k,
designated as RMSCE, can be calculated as follows
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where Nm denotes the amount of measured wind data.
SKMC is sensitive to the selection of the initial centroids.

BKMC can overcome the sensitivity of the selection of the
initial centroids, but it does not re-assign the points that
belong to the previously split groups. Therefore, an IBKMC
combining SKMC and BKMC is presented in this paper. In
IBKMC, BKMC is used for splitting a group into two groups
and producing two centroids that are used as the initial
centroids of SKMC. The clustering processes of IBKMC are
described in detail as follows:

Step 1) Initially, all points construct a group. Let j=1.
Step 2) Select randomly two points from a selected group

as the initial centroids.
Step 3) Calculate the Euclidean distances between all

points in the selected group and the two centroids, and assign
all points to the closest centroid.

Step 4) Recalculate the centroids of the two groups.
Step 5) Repeat Step 3) and Step 4) until the two centroids

remain constant. j=j+1.
Step 6) Use the j centroids as the initial centroids of SKMC

for reassigning all points that belong to the j centroids, and
recalculate the centroids of the groups.

Step 7) Go to Step 2) to split the next group with the
maximum RMSEGj until j=k.

Step 8) Check all centroids. For any i and j∈(1, 2, … Nj),
and i≠j, if mvi=mvj, the centroid of the jth group will be
replaced by a closest point to (mvj, mpj), and go to Step 6) until
all mvi are unequal.

If there is no requirement of mvi≠mvj (i≠j, i, j∈(1, 2, … Nj)),
implement the above Steps 1) to 7); otherwise, implement the
Steps 1) to 8).

B. WPC Modelling Based on Interpolation
In mathematics, a polynomial equation of degree n can be

expressed as (5)

0
( ) ,

n i
i

i
p v a v


  (5)

where v denotes a variable (it denotes wind speed in this
paper); a0, a1, …, an represent the coefficients of the nth
degree polynomial equation; and p(v) denotes the functional
value of the polynomial equation (it denotes the power output
of a WTG with a wind speed v in this paper).

According to the proposed IBKMC from Steps 1) to 8), k
clustering centroids (M1(mv1, mp1), M2(mv2, mp2), …, Mk(mvk,
mpk)) are obtained. A function that matches the values at the
clustering centroids is developed. A (k-1)th degree
polynomial equation that passes through all the clustering
centroids can be formulated analytically for obtaining the
algebraic equation of WPC. Equation (5) can be rewritten as
follows:
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In (6), mvj and mpj for any j are known values, whereas a0,
a1, …, an are the unknown values. Therefore, in order to
obtain the deterministic expression of a polynomial of degree
k-1, equation (6) needs to be solved for obtaining the values of
a0, a1, …, an. Equation (6) can be expressed using a matrix as
follows:
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Equation (7) can be simplified using Mv×A=Mp. Matrix Mv

is a Vandermonde matrix [23-24]. Thus, the determinant of
matrix Mv can be calculated using (8):
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Due to mvi≠mvj for any i and j (i≠j). Thus, matrix Mv is
invertible. Therefore, A can be calculated using (9)
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where Mv* denotes the algebraic cofactor of matrix Mv.
In this paper, the linear interpolation and quadratic

interpolation based on the above analysis is used for
modelling the WPCs of a WTG. The cubic spline
interpolation introduced in [25] is also used for modelling a
WPC. RMSEWPC from (10) is used for calculating the error of
the different interpolation methods
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where Pm(v) denotes the measured power output of a WTG
having the wind speed v; PWPC(v) represents the power output
calculated by the WPC having the wind speed v.

III. APPLICATION OF PROPOSED WPC TO RELIABILITY
ANALYSIS OF GENERATING SYSTEMS

A. Wake Model
As the wake effect has a significant influence on the energy

production of a wind farm [26], it should be incorporated into
the analysis of a power system with the integration of a wind
farm. References [27] and [28] introduced the Jensen wake
model used for a flat terrain and the Lissaman model used for
a complex terrain.

B. Reliability Analysis
A wind farm is incorporated into a conventional generating

system, and an analytic method [29], [30] is used for
evaluating the reliability of the combined generating system
(CGS). In the wind farm, the wind speed data as the input
variable are used for calculating the wind power output using
the WPC model proposed in this paper.

In this paper, reliability indices, such as the loss of load
probability (LOLP), loss of load expectation (LOLE,
hours/year), and expected energy not supplied (EENS,
MWh/year), are evaluated. These indices can be expressed as
follows:

,
f

i
i S

LOLP p

  (11)
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where Sf denotes a set of all system failure states; pi and Ci

indicate the probability and the capacity of failure state i,
respectively; T denotes the total time length.

An index for describing the energy production of a wind
farm, designated as EPWF (MWh/year), is calculated for
comparing the accuracy of the different WPC models. The
error of EPWF for the different WPC models, designated as
EPER, is calculated for directly reflecting the accuracy.

,m

m
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EPWF


 (14)

where EPWFm denotes the energy production of the measured
data in a real wind farm. EPWF indicates the energy
production obtained from a WPC model.

IV. CASE STUDIES

WTGs with a rated power of 850 kW are installed in a real
wind farm, and the cut-in speed, rated speed, and cut-out
speed of the WTG are 3 m/s, 11 m/s, and 20 m/s, respectively.
A nonlinear relationship between the wind speed and the
power output of a WTG measured in the real wind farm is
illustrated in Fig. 4. A WPC provided by the wind turbine
manufacturer, designated as MWPC, and a typical WPC [31],

designated as TWPC, are also illustrated in Fig. 4. The power
output data in failure states of WTG are removed from data
which was used to model WPC.
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Fig. 4. WPC of a WTG.

Because of the impact of various factors, the real
relationship between the wind speed and the power output of a
WTG is not always completely in accordance with the WPC
provided by the manufacturer. Therefore, it is essential to
model a WPC of the WTG for precisely reflecting the
relationship by using the method proposed in this paper.

A. WPC Modelling based on Proposed Method
1) Clustering based on IBKMC.
The measured wind speed and power output data as points

in a two-dimensional Euclidean space are clustered into a
certain number of groups (k) on the basis of the proposed
IBKMC. The percentage of RMSECE shown in Fig. 5 is used
for assessing the clustering error.
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Fig. 5. RMSECE with different numbers of clusters.

It can be seen from Fig. 5 that RMSECE gradually decreases
with an increase in the number of clusters, but it starts to
decline slowly at k = 15.

The clustering centroids with k = 15 are shown in Table I,
and for a comparative analysis, the centroids are also
illustrated in Fig. 6.

It can be seen from Fig. 6 that in the vicinity of the rated
wind speed, there is a relatively large difference between
MWPC and the clustering centroids.
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Fig. 6. Clustering centroids with k = 15.

TABLE I. CLUSTERING CENTROIDS WITH K = 15.
Number Centroids Number Centroids

1 (3, 0) 9 (8.79, 460.6)
2 (4.27, 37.1) 10 (9.20, 549.1)
3 (5.28, 82.3) 11 (9.97, 664.1)
4 (6.05, 127.0) 12 (10.57, 767.8)
5 (6.67, 182.5) 13 (11.02, 830.3)
6 (7.27, 248.3) 14 (11.96, 850)
7 (7.82, 316.8) 15 (13.21, 850)
8 (8.32, 393.2) - -

2) WPC modelling based on interpolation method.
According to the clustering centroids, linear interpolation,

quadratic interpolation, and cubic spline interpolation are
used for modelling the WPC of a WTG. The RMSEWPC of
different interpolation methods is shown in Fig. 7.

In Fig. 7, RMSEWPC based on these three interpolation
methods first decreases rapidly with an increase in k and then
tends to stabilize. However, when the value of k is greater than
9, cubic spline interpolation has a greater error than linear
interpolation and quadratic interpolation.

In this paper, WPC obtained by linear interpolation is
designated as LWPC, whereas that obtained by quadratic

interpolation is designated as QWPC. On the basis of the
numerical analysis theory, the coefficients of piecewise
LWPC and QWPC are obtained, as shown in Table II and
Table III, where LB and UB denote the lower bound and the
upper bound, respectively. When the wind speed is less than
2.24 m/s, the power output is zero, and when the wind speed is
higher than 13.21 m/s, the power output is 850 kW. LWPC
and QWPC are illustrated in Fig. 8.
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Fig. 7. RMSEWPC of different interpolation methods.
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Fig. 8. WPCs based on different methods.

TABLE II. EQUATION COEFFICIENTS BASED ON LINEAR INTERPOLATION.
Wind speed

range
Equation

coefficients
Wind speed

range
Equation

coefficients
LB UP a0 a1 LB UP a0 a1

3.0 4.27 -87.78 29.26 8.32 8.79 -810.14 144.58
4.27 5.28 -153.51 44.66 8.79 9.20 -1454.37 217.87
5.28 6.05 -222.96 57.82 9.20 9.97 -820.07 148.89
6.05 6.67 -414.47 89.45 9.97 10.57 -1058.39 172.80
6.67 7.27 -548.30 109.51 10.57 11.02 -709.14 139.76
7.27 7.82 -668.65 126.05 11.02 11.96 600.90 20.82
7.82 8.32 -864.56 151.12 11.96 13.21 850.00 0.00

TABLE III. EQUATION COEFFICIENTS BASED ON QUADRATIC INTERPOLATION.
Wind speed range Equation coefficients

LB UB a0 a1 a2

3.0 5.28 -1.26 -19.85 6.76
5.28 6.67 502.59 -199.47 22.70
6.67 7.82 153.50 -92.14 14.46
7.82 8.79 -1302.22 259.69 -6.73
8.79 9.97 -6183.89 1270.30 -58.52
9.97 11.02 -4384.02 821.12 -31.57

11.02 13.21 -646.88 238.41 -9.47
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A. Application of WPC Model to Reliability Analysis
The wind farm with 20 identical WTGs is incorporated into

the Roy Billinton Test System (RBTS), which has an annual
peak load of 185 MW and an installed capacity of 240 MW.
The detailed basic reliability data are presented in [32].

In the wind farm, the WTGs are distributed in four rows
and five columns. The distance between any two adjacent
rows is 400 m, and the distance between two adjacent
columns is 300 m. The rotor diameter (2r) is 56 m, and the
hub height is 70 m. Force outage rate of a WTG is 0.04. It is

assumed that the failed upstream WTG will not produce
wake.

In order to compare the accuracy of the proposed WPC
model, the measured wind speed data are used for evaluating
the reliability of the CGS. As LWPC has a smaller RMSEWPC

when k has a relatively large value, it will be analysed in this
section. LWPC with k = 15, 20, 30, 40, 50 is used for
evaluating the reliability of the CGS and for calculating
EPWF and EPER. The results with or without considering the
wake effect are shown in Table IV and Table V, respectively.

TABLE IV. RESULTS WITHOUT CONSIDERING WAKE EFFECT.
WPC k LOLP LOLE EENS EPWF EPER (%)

Measured data - 8.934E-05 0.7826 6.759 28238.6 -

LWPC

15 8.886E-05 0.7784 6.729 28578.8 1.20
20 8.891E-05 0.7789 6.731 28561.6 1.14
30 8.908E-05 0.7803 6.739 28468.1 0.81
40 8.917E-05 0.7811 6.743 28421.3 0.65
50 8.926E-05 0.7819 6.750 28339.4 0.36

TWPC - 9.027E-05 0.7907 6.796 27780.1 1.62

TABLE V. RESULTS CONSIDERING WAKE EFFECT.
WPC k LOLP LOLE EENS EPWF

LWPC

15 9.593E-05 0.8403 7.209 23367.4
20 9.578E-05 0.8390 7.215 23302.7
30 9.581E-05 0.8393 7.229 23167.4
40 9.58E-05 0.8396 7.235 23105.1
50 9.61E-05 0.8415 7.245 23008.1

TWPC - 9.701E-05 0.8498 7.300 22434.3

From Table IV, the indices of LWPC and TWPC can be
compared with those of the measured data. It can be seen that
LWPC with any value of k given in Table IV has a higher
accuracy than TWPC, and EPER gradually decreases with an
increase in k. According to the comparison of Table IV and
Table V, the wake effect decreases the reliability of the
generating system and the wind energy production.

V.CONCLUSIONS

The energy production of a wind farm is affected by
various factors. However, some factors might not be
expressed using an accurate mathematical model for
calculating the wind energy production. Therefore, it is
essential to model a wind turbine generator (WTG) according
to the measured wind speed and the power output data for
including the impacts of various factors.

In this paper, we present an improved bisecting k-means
clustering algorithm (IBKMC). IBKMC is used for
partitioning the measured data into a certain number of groups
that can be expressed using their centroids. The interpolation
method based on polynomials is applied to the clustering
centroids for modelling the wind power curve (WPC) of a
WTG. The linear interpolation method (LIM), quadratic
interpolation method (QIM), and cubic spline interpolation
method (CSIM) are used for analyses based on the root mean
square error (RMSE) in this paper. The WPC model is applied
to the reliability analysis of a combined generating system
(CGS) with the integration of a wind farm. The CGS with and
without considering the wake effect is evaluated for

comparing the impact of the wake effect. The results show
that the accuracy of the WPC models first decreases rapidly
with an increase in the number of clusters and then tends to
stabilize. Moreover, LIM has a superior performance in
comparison with QIM and CSIM when there are a relatively
large number of clusters.
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