
ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 19, NO. 6, 2013 

  
Abstract—The article presents the analysis of both, synthetic 

and experimental Ground Penetrating Radar (GPR) data by 

the use of curvelet transform. The images, received from GPR 

technique, called B-scans are 2D images, where the first 

dimension represents time and the other one represents depth. 

These images are often low resolution and noisy. Besides, B-

scans are often very difficult to interpret even for experts. That 

is why the curvelet transform has been applied to clarify the 

meaning of images. We have shown that the image analysis 

process of B-scans can be automated by the use of curvelet 

transform, which lets us detect the edges in any angle in the 

image under consideration. It was proven that the proper 

analysis and the choice of curvelet transform coefficients allows 

to clearly specify the location of the target. The main advantage 

of the curvelet analysis is the efficient detection even when we 

deal with low resolution and noisy images.  

 
Index Terms—GPR, curvelet transform, signal processing, 

electromagnetic imaging.  

I. INTRODUCTION 

The sensors which are used during non-destructive tests 
work on the base of the detection and the analysis of 
electromagnetic field scattered from the objects under 
investigation. In general, the data received from these tests 
are analyzed and interpreted using advanced signal analysis 
techniques [1]–[3]. In some cases the buried object detection 
methods can simultaneously use a few advanced algorithms 
[4] and advanced data acquisition equipment [5]. In the case 
of GPR technique the signal analysis can be divided into 2 
steps [6], [7], where the objects' parameters are detected or 
the analysis of raw data is aimed at the detection of the 
object location [8]. In practice, GPR data interpretation is 
very sophisticated due to low image resolution and 
inhomogeneous materials. That is why the experts' 
knowledge is required. One of the problems connected with 
GPR technique is also high amplitude of the first response 
from the object called clutter. Therefore, there are often 
problems with the detection of the object located near the 
GPR sensor or near the surface. In order to avoid the 
problems with clutter two methods are often used:  
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1) Filtering; 
2) Cutting the signal in the proper time.  

The filtering is particularly useful when objects like 
landmines buried at shallow depths are investigated [9]. 

Taking the above problems into account different methods 
are used, which help to interpret the data. One of these 
methods is the curvelet transform, which was successfully 
applied to borehole GPR [10] or to the classical impulse 
GPR [11]. 

The main shapes which occurred in B-scans are 
hyperbola-like shapes, which are caused by rebars, tubes and 
other linear objects. In this case the shape of hyperbola 
depends on the diameter of a rebar and the EMF velocity in 
the material surrounding the object.  

The resolution of GPR data is approximately equal 1/4 of 
the length of electromagnetic wave. The higher frequency is 
used, the better the resolution is, but the depth of penetration 
is lower. On the other hand, when the frequency is lower, the 
depth of penetration is deeper, but the resolution is low.  

The process of signal interpretation can be divided into a 
few steps depending on the needs and the kind of problem in 
question, as follows: 

1) Data correlation connected with the imperfection of 
measurement system; 
2) Extraction of noise, disruptions of all sorts and 
clutter reduction; 
3) Image amplification (edge detection, data 
compression); 
4) Temple matching, neural network hyperbola 
identification; 
5) Classification of detected shapes;  
6) Object parameters determination by the means of 
classified shapes (size and object position). 

The methods of GPR signal processing depends on the 
kind of data and can be divided into two groups: 

7) Initial A-scan transformation understood as data 
filtration and deconvolution. 
8) B-scan transformation understood as image 
processing (migration, edge detection) or the methods of 
image analysis like template matching or artificial neural 
network. 

In our case we have applied B-scan signal analysis 
method, which is sufficient when hyperbola-like shapes are 
detected in the images. The detected shapes have let us for 

The Curvelet Transform Application to the 
Analysis of Data Received from GPR Technique 

S. Cieszczyk1, T. Lawicki1, A. Miaskowski2 

1
Institute of Electronics and Information Technology, Lublin University of Technology,  

Nadbystrzycka St. 38a, 20-618 Lublin, Poland 
2
Department of Applied Mathematics and Computer Science, University of Life Science,  

Akademicka St. 13, 20-950 Lublin, Poland 

s.cieszczyk@pollub.pl 

http://dx.doi.org/10.5755/j01.eee.19.6.4574 

99



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 19, NO. 6, 2013 

later quantitative data interpretation [12], [13]. 

II. CURVELET TRANSFORM 

Curvelet transform belongs to the group of multiresolution 
transformations, which can be used for the detection of 
edges in the images under consideration.  When comparing 
this method with another one, but of the same type like, for 
example wavelets, apart from the scale and the location 
parameters, there is also a unique parameter of the 
orientation which lets the image analysis up to 72 different 
angles when the image resolution is 512 x 512 px. That is 
why the anisotropic analysis of the images with regard to the 
edges and shapes, which can occur in the image, is possible. 
Comparing this with wavelet method, the detected edges do 
not have to be horizontal or vertical ones, and they do not 
need to create the same angle. This analysis can be done on 
different decomposition levels or for different resolutions, 
which is a very important advantage when GPR data are 
considered.  

 
Fig. 1.  Curvelet transform coefficients structure. 

Depending on the resolution of the analyzed image the 
patters of the image are identified (grouped) in the separated 
matrixes. The discrete parameters of orientation are grouped 
on different levels in a way that every matrix sequence has 
data of different image patters. In the presented work the 
authors used FDCT (Fast Discrete Curvelet Transform) 
algorithm via Wrapping implemented in CurveLab [14] 
library which belongs to MATLAB. The structure of 
curvelet transform coefficients which have been received on 
the base of CurveLab are shown in Fig. 1. The detail 
structure explanation of curvelet transform coefficients and 
their features can be found in [11], [14]–[17]. 

III. GPR DATA 

The application of curvelet transform to the data analysis 
from GPR has been done for two cases: synthetic data 
generated in GprMax software [18] and experimental data. 
In both cases the monostatic configuration has been used 
(see Fig. 2), where one antenna works as receiver and 
transmitter. During GPR measurements the antenna from 
position N =1 is moved to position N=41.  

In our case the model of concrete slab with dimensions of 
0.6 x 0.3 meter and perfectly conducting scatter (rebar) of 
various radius φ (from 0.005 to 0.03 m)  have been used (see 
Fig. 3). Moreover, the rebar was located in different depths 
and positions with regard to the air bubbles understood as 
the distortion. The following dielectric parameters have been 
assigned to the concrete: εr = 6 and σ = 0.01 S/m. To 
simulate GPR antenna at center frequency of f = 900 MHz a 
ricker (I) source has been applied 
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Fig. 2.  GPR measurement setup.  

 
a) 

 
b) 

Fig. 3.  The rebar in the concrete surrounded by the air bubbles (a) – the 
model, b) – B-scan received from simulation. 
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Before curvelet transformation application these data have 
to be carefully prepared because they possess negative 
values, which do not occur in classical digital images. The 
initial image analysis based on curvelet transform is 
connected with the contrast and features amplification, 
which are used in further analysis. In this way the image 
interpretation becomes easier for GPR operator.  

In our case the images were initially transformed to 
512x512 pixels, then the clutters have been excised. All the 
images show the case of a metallic object (rebar) in the 
concrete with air bubbles as the source of noise (Fig. 2). In 
this case the classical B-scan will present the sequence of 
hyperbola-like shapes. One of the cases which were 
investigated in this work can be seen in Fig 3. The model 
configuration can be seen in Fig. 3a and its B-scan generated 
with GPRMax software in Fig. 3b. The interpretation of this 
image will be based on the finding of hyperbolas maximums, 
understood as the object findings.  

IV. SYNTHETIC DATA ANALYSIS 

During the investigation presented in this work the 
sequence of matrixes and their coefficients, which determine 
the information about the object localization has been 
established. By the use of curvelet transform we have 
observed diagonal coefficients of the matrix sequence, which 
are important for searching the localization of the objects. 

The coefficients of curvelet transform consist of 146 
matrixes describing transform development with regard to 
every level of the resolution (scale) and the orientation. The 
first matrix consists of the coefficients on the lowest degree 
of decomposition, while 146th matrix consists of the 
coefficients on the highest level of the decomposition. The 
matrixes from the second to 145th consists of the 
coefficients which take into account the orientation 
parameter i.e. every matrix consists of the coefficients 
describing the details in the B-scan image under the 
specified angle. For example, matrixes: 4, 22, 54 and 90 
contain the coefficients which are responsible for the 
horizontal details in the image, for different levels of the 
resolution, from the lower to higher ones, respectively. 
Analogously, the matrixes 7, 29, 61 and 105 contain the 
coefficients responsible for the vertical details in the image. 
During the investigation on the presented task, we have 
established the matrixes which contain the coefficients of 
curvelet transform which carry important information about 
the object localization.  

In our case we have used all the features of curvelet 
transform with regard to the shapes identification in the 
images under investigation. For the cell coefficients which 
contain 146 matrixes the thresholding of coefficients has 
been done. In this way, after inverse curvelet transform 
hyperbola, shapes can be retrieved without the noise. The 
choice of threshold values for the coefficients in the different 
matrices was made experimentally. 

In Fig. 4 and Fig. 5 the effects of curvelet transform 
application to the rebars with different diameters in concrete 
are presented. Because the rebar was located in different 
depths we were able to observe different positions of 
hyperbolas tips. We have also investigated rebar diameter 

influence on the parameters of reconstructed hyperbolas. It 
was concluded that there is no influence of rebar diameter on 
detection. 

 
Fig. 4.  The reconstructed hyperbola-like shapes received from the inverse 
curvelet transform with thresholding applied to the rebar in the concrete. 
The diameters (φ) and the depth (d) of three rebars are varied (φ1> φ2> φ3 
where φ1=50, φ2=125, φ3=300mm), (d1<d2<d3, where d1=40, 
d2=100,d3=160 mm). 

 
Fig. 5.  The reconstructed hyperbola-like shapes received from the inverse 
curvelet transform with thresholding applied to the rebar in the concrete. 
The diameters (φ) of three rebars are constant (φ1= φ2= φ3=125 mm) and 
the depth (d) are varied (d1<d2<d3, where d1=40, d2=100, d3=160 mm). 

V. EXPERIMENTAL DATA ANALYSIS 

On the base of the analysis carried out in the previous 
section we have established the threshold values of 
coefficients, which have been used in the analysis of the 
experimental data. In this way we were able to clearly 
identify the locations of the hyperbolas' tips in experimental 
data. The interpretation of this type of images is easy for 
GPR operator, it lowers the risk of mistakes, and finally 
enables a large data analysis.  

The reconstructed image based on curvelet transform is 
shown in Fig. 7 and its B-scan in Fig. 6. Because of B-scan 
was of low resolution in the cell of curvelet transform 
coefficients, the matrixes describing high resolution details 
did not contain any significant coefficients. The information 
about hyperbola-like shape was contained in the matrixes 
describing the low resolution details. That is why the result 
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of inverse curvelet transform application is of lower 
resolution when it is compared with synthetic data analysis. 

 
Fig. 6.  The B-scan received from measurements - the rebar in the concrete. 
The white frame indicate the case under consideration. 

 
Fig. 7.  The reconstructed hyperbola-like shape received from the inverse 
curvelet transform with thresholding applied to the rebar in the concrete. 

VI. CONCLUSIONS 

The article presents the application of curvelet transform 
to the analysis of GPR images received from synthetic and 
experimental data. The investigation has allowed us to point 
out the features of curvelet transform of GPR technique. We 
have shown that the application of culvelet transform to B-
scans images with many disturbances like, for example, air 
bubbles can properly eliminate most of the visual artifacts 
and recover more details from the image. This allows us to 
clearly detect the buried scatterer, which belongs to the class 
of searched objects.  

On the base of the former data we have established the 
coefficients set of curvelet transform, which were applied to 
the latter data. We have shown that curvelet transform 
enables to detect the edges of different shapes and spatial 
orientation in B-scans. Moreover, the research enables us to 
choose the proper coefficients and decomposition levels that 
mirror physical phenomenon as well as possible. In this way 
we have shown that B-scan image analysis can be 
understood as a special case of inverse problem. 

 A number of simulated cases let us transform the results 
from numerical experiments into real ones. Finally, the 
process of hyperbola tips detection can be automated. When 
the parameters of the process are known (spatial and time 
resolution), and by using the experience received during 

computer based experiments, we are able to set optimum 
values of curvelet transform coefficients, which are 
necessary to establish proper detection. 
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