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Introduction 

 
In the IEEE Member Digital Library [1] we can find 

about a dozen of papers concerning the signal processing 
based on the rotation angles. We suppose that the 
cornerstones for the description of discrete orthogonal 
(orthonormal) transforms are rotation angles of planes in 
Euclidian space [2]. The angular approach is very well 
known in linear algebra but it has been used not so often 
by signal processing people. It seems that H. C. Andrews 
[3] is a pioneer in the area of parameterization of fast 
orthogonal (orthonormal) transforms by rotation angles of 
planes. P. Rieder with colleagues (for example, [4]) use 
rotation angles in the context of CORDIC-based 
implementation of orthogonal wavelet transforms and 
DCT. The pioneer in introducing and using of rotation 
angle based orthogonal filters is P. P. Vaidyanathan [5]. 
We avoid here a detailed overview of all available works 
on rotation angle approach because of the limited space of 
paper. Such overview is available in [6]. 

In [2] we introduced several classes of real discrete 
Rotation Angle Based Orthogonal Transforms (RABOT). 
These transforms can be interpreted also as a single 
parametrical transform with infinite number of shapes of 
basis functions (BFs). On the other hand, we can use 
rotation angles as the base for different classification 
schemes of orthogonal transforms [2]. 

We expect that the use of RABOT transforms could 
be very promising in signal analysis and synthesis. We are 
working on that. Particularly, preliminary results show that 
one of the subclasses of RABOT (in [2] called as 
CRAIMOT) is very useful for compression of speech. We 
need a relatively small number of orthogonal functions 
(sometimes only a few BFs) to represent, for example, the 
vowels of Latvian speech [7]. Our team works on the 
development of FPGA-based "angular" devices. 
Experimental generators [8], analyzers [9] and orthogonal 
filters [10] are our results in the previous year. We expect 
an appearance of devices for more wide range applications 
in the nearest future. Simultaneously with the practical 

programming of FPGAs we work on the "theory" of angle-
based functions (Phi-functions). One of the recent papers 
deals with a possible generalization of Haar functions [11].  

Although our team has issued more than a twenty of 
papers about Phi-functions during the recent 6 years, this 
introductory paper is only the first step in the range of 
"theoretical" works dealing with two-dimensional (2-D) 
transforms. We do not aim for mathematical perfection and 
absolute novelty. Some things are well known but some of 
them appear for the first time. 
 
Basics of two-dimensional orthogonal transforms 

 
The real discrete 2-D Rotation Angle Based 

Orthogonal Transform (RABOT2D) is closely related to 
the other real discrete 2-D transforms (Haar, Hartley, 
Hadamard etc. [12]). It is a separable linear transformation 
- that is, the 2-D is equivalent to a one-dimensional (1-D) 
RABOT performed along a single dimension followed by a 
1-D RABOT in the other dimension. The definition of the 
RABOT2D for an input image (signal) X (size of NN) 
and output image (spectrum) Y (also size of NN) is: 
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where x(r,k) and y(r,k) are the value of the element of 
signal (pixel) and spectrum, respectively. r and k are row 
and column indexes. (p,q) represents the element of 1-D 
transform matrix H in p-th row and q-th column. We 
reduce here and below orthogonal transforms to 
orthonormal transforms by ignoring the scaling factors that 
are is usual for such transforms. Such approach simplifies 
manipulations with formulas. 

We can also represent a direct 2-D transform in the 
matrix form 
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TT ))(( XHHY  , (2) 

where H is a 1-D orthonormal matrix but (…)T means the 
transposition of matrix. 

The inverse transform can be presented similarly 

TTTT ))(( YHHX  . (3) 

It is easily to find the equivalent of  (1) for the inverse 
transform, but this is not so significant because for the 
calculation of orthonormal transforms the fast algorithms 
can be used. 

The inverse transform (3) can be used to calculate the 
chosen 2-D BF F(r,k), if we assign the 1 to the element 
y0(r,k) of the matrix of all zeros Y0 

TTTT krkr ))),(((),( 0YHHF  , (4) 
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(5) 

This assignment means that here has been used only 
one 2-D spectrum coefficient which corresponds to chosen 
2-D BF. If we take into account (5), we can simplify (4) 

HFFHF  ),()),((),( 00 krkrkr TTT , (6) 

where F0(r,k) is the matrix with the r-th 1-D BF instead of 
k-th row and all zeros in the other rows 
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Finally, the 2-D BF can be expressed as 
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where p, q = (p, q). 

Fast Algorithms 
 

The 1-D RABOT transform has a fast algorithm 
(RABFOT) defined as the product of sparse orthogonal 
(orthonormal) matrices [2] 
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where Bp – sparse orthonormal matrix (the Stairs-like 
Orthonormal Generalized Rotation Matrix (SOGRM) [2]) 
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where 1
i, j  and 2

i, j are 2-element row-vectors which 
originate from the elementary four-element rotation matrix 
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Elements nm
jif ,  in (11) present the cosine and sine 

values of angle i j. We use shortcuts for the cosine (c) and 
sine (s) values 
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where G and R geometrically represent the kind of rotation 
of planes (see [2]). In such a way we can create an infinite 
number of orthonormal (also orthogonal) transforms by 
using the rectangular matrix of rotation angles ([2]) 
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In formula (9) p represents the p-th column-vector of 
angle matrix  

T
pNppp ],,,[ 2/21   . (14) 

We can define some relations between the elements 
of angle matrix and get some classes of orthogonal 
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transforms (OT) (see the section about the classification of 
RABOTs). 

We can replace the transform matrix H in (2) and (3) 
by the product of SOGRM matrices (10) to get the fast 
version of RABOT2 – RABFOT2. For the direct transform 
we obtain 

TT
ll ))(( 1212 XBBBBBBY   . (15) 

But, in the case of inverse transform we have 
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Sometimes for the implementation of HT it is more 
convenient to use the transposed form of SOGRM matrices 

T
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In the case of the generation of single 2-D BF ((6)) it 
is also possible to get the benefit of the number of 
operations used for the generation of BF by the allocation 
of SOGRMs 

120 ),(),( BBBFF  l
T krkr . (18) 

Classes of RABOT2 transforms 
 
Each reader can create his own novel class of 

transform by choosing restrictions on the angle matrix 
(13). It is possible also to define 2-D RABOT (RABOT2) 
similar to the 1-D RABOT [2]. We will limit our efforts to 
a preliminary short description of RABOT2 only (see 
Table 1). 
 
Table 1. Description of RABOT2 

Transform  Comments 
RABOT – Rotation 
Angle Based OT ijij    angles in (13) are 

different 
CRAOT – Constant 
Rotation Angle OT 

 ij  all angles are equal 

CRAIMOT – Constant 
Rotation Angle Inside 
Matrix OT 

iij    
all rows in (13) are 
equal (one constant 
angle per B) 

CRMOT – Constant 
Rotation Matrix OT jij    

all columns in (13) are 
equal (all B matrices are 
equal) 

RAHT – Rotation 
Angle-based Haar-like 
Transforms 

see [11] 

angle matrix has a 
triangle structure with 
constant value angle in 
the right lower corner 

 
Shapes of BFs 

 
We can get an infinite number of shapes of BFs by a 

simple change of angles in matrix (13). In such a way, for 
example, the angle matrix (for N=23) with a triangle 
structure and two different values (/6, /4) 
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(19) 

gives the set of BFs which are shown in Fig. 2. 
 

 
 

Fig. 1 The full set of 2-D basis functions for rotation angles 
defined by (19) 
 

It is possible also to define the a 2-D version of 
generalized Haar-like functions [11] for the angle matrix 
with zeros in the lower right corner 
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(20) 

Corresponding BFs are shown in Fig. 3 
 

 
Fig. 2 The full set of 2-D basis functions for rotation angles 
defined by (20) 
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Number of Operations for the Calculation of RABOT2 
 
In the case of practical implementation of RABOT2 

the estimation of the number of arithmetical operations is 
of primary importance. 

1. Number of Operations for the Direct Calculation. 
The formula  (1) or (2) can be used to estimate the number 
of multiplications and summations. We have NN=N2 2-D 
BFs or the same number of spectrum coefficients. For the 
calculation of spectrum we need: 
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where nmult2D  – the number of multiplications, nsum2D – the 
number of additions, but nop2D – the total number of 
operations. It is evident that such a number of operations is 
practically senseless (e.g. [12]). We need close to 8 
millions (8355840) operations for a gray scale picture with 
resolution of 128128 pixels. 

2. Number of Operations for the Fast Calculation. As 
mentioned above, the sparseness of Bj in (10) ensures a 
fast algorithm for the calculation of RABOT. The total 
number of mathematical operations for the calculation of 
fast transform (FT) by using (15) or (16) may be easily 
found. Matrices Bj contain mainly zeros. There are only 
two elements per column and per row which are not equal 
to zero. A single elementary rotation takes four 
multiplications and two summations in general case. We 
have N/2 rotations per each SOGRM and we must perform 
these rotations on each of N columns of the transformed 
matrix (in the first step - on the signal/spectrum X/Y 
matrix). The mentioned operations must be repeated 2 l 
times: 
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where nmult 2D FT – the number of multiplications for FT, 
nsum 2D FT – the number of additions for FT, but  
nop 2D FT – the total number of operations for FT. The 
improvement of performance is almost 10000 times for the 
example from the previous subsection (a picture with 
resolution of 128128 pixels). 

In the case of CORDIC implementation of rotations it 
is possible to reduce the number of operations to 

2
2

2
2 )(log NNNln FTDoprot  . (23) 

3. Number of Operations for the Generation of BF. 
Our experience with 1-D signals shows that sometimes for 
the  synthesis of  signals are  necessary  only a few  BFs. In  

this case FT can be slower as the direct calculation. We 
expect that a similar situation could occur with 2-D signals 
too. In such a context the estimation of the number of 
operations needed for the calculation of standalone 2-D BF  
could be important. From (18) we see that NN 
multiplications are necessary in the final stage 
(multiplication by F0). The number of multiplications 
increases in a geometrical progression for the sequence of 
terms Bj when going leftward through the factorized 
matrices 
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4. Comparison of the Number of Operations. The 
next figure shows the results obtained by formulas 
(22)-(24). 
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Fig. 3 The total number of operations for the fast calculation of 
transform and single BF 
 

This result indicates that for the calculation of single 
BF we need a relatively large number of operations when 
comparing it with the number of operations needed for FT. 
 
Analyzer-Synthesizer-Generator 

 
The main practical result of this work is a MATLAB 

based tool called as "Analyzer-Synthesizer-Generator" 
(ASG). This initial tool is very useful for 2-D Phi-Function 
generation (BFS). ASG is also very handy for image 
analysis and synthesis and can be used for educational and 
research goals. ASG allows the import of images from 
different sources and displays them in the left window of 
GUI desktop (Fig. 4). In dependence of the state of control 
this window shows also spectrum image, set of BFs, 
synthesized image and 1D transform matrix. The right part 
of desktop is used for setting the angles, but the lower part 
is allocated for the tool control. In the recent version (look 
for next papers) the tool is equipped with the automatic 
search of optimal transform (i.e. angle matrix) for a given 
image, and it is targeted on the development of optimal 
image compression algorithms. 
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Fig. 4. The main desktop of ASG. Example of BFs for N =8 and some set of angles 
 

 
 
Fig. 5. The main desktop of ASG. Example of 1-D RABOT matrix (matrix values correspond to the intensity of pixels) for N =8 and 
some set of angles 
 
Conclusions 

 
This is an introductory work offering a compact, on 

rotation angles based description of existing and new 
classes of fast 2-D orthogonal transforms. 

In our opinion the angle-based approach provides:  
 unified fast algorithm for the synthesis of novel 

2-D parametrical orthogonal transforms,  
 new schemes of classification and comparison of 

existing and novel 2-D orthogonal transforms, 
 new techniques for analysis and synthesis of 2-D 

signals – to a much wider extent the image 
processing possibilities than in the case of 
wavelets,  

 promising 2-D signal compression algorithms, 
 promising 2-D signal filtering algorithms. 
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