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Introduction 

 
Targeting low cost solution for land vehicles, Micro–

Electro–Mechanical Systems (MEMS) based inertial 
sensors are used. These sensors suffer from complex 
stochastic error characteristics that are difficult to model.   
Kalman filter (KF) has limited capabilities in providing 
accurate estimation of such system parameters, because KF 
is restricted to use only Gaussian linear models for these 
sensors’ stochastic errors. EKF makes linearization of 
non–linear model, and after solve problem optimally by 
KF. This first order linearization in EKF   introduces 
additional errors and difficulty in estimating process [1, 2].    
It is becoming important to include elements of 
nonlinearity in order to model accurately the underlying 
dynamics of inertial system. To solve the problem of 
nonlinear filtering, the particle filter (PF) was proposed. It 
was first introduced by Gordon et al. (1993). PF exploits 
numerical representation techniques for approximating the 
filtering probability density function (PDF) of inherently 
nonlinear non–Gaussian systems. Using these methods, the 
obtained estimates can be set arbitrarily close to the 
optimal solution (in the Bayesian sense) at the expense of 
computational complexity [2, 3]. 

 
Integration strategy and sensor error characteristics 

 
In this paper total state system and measurement 

model and  loosely coupled  integration  is used for GPS 
and IMU systems. The position from GPS navigation 
solution is input as a measurement to the integration PF 
filter. In  a loosely coupled architecture, there is  a stand–
alone GPS navigation solution available in addition to the 
integrated solution.  

MEMS sensors are cost effective with small 
dimensions, but its performance is seriously affected by   
errors  such as   biases, scale factor variations, drifts and 
sensor noise. 

The measurement γ provided by accelerometer may 
be expressed in terms of the applied acceleration, acting 
along its sensitive axis (ax),  bias (b) and scale factor (S)  
by the equation[3] 

 

γ=ax+bconst+brandom+(Sconst+Srandom)ax+η,              (1) 
 

here bconst and brandom are deterministic and random part of 
accelerometer bias (m/s2), Sconst and Srandom are 
deterministic and random part of accelerometer scale 
factor,  η– accelerometer sensor noise . Ideally, when no 
input is applied to the sensor, the output signal received 
from the sensor should read 0. However, this is not the 
case, and an offset called the bias exists. An 
uncompensated accelerometer bias introduces an error 
proportional to time (t) in the velocity and proportional to 
t2 in the position. Moreover every time the sensor switched 
on, a slightly different bias or scale factor value is 
observed for low–cost MEMS sensors. As these errors 
cannot be easily separated from the sensor data, these are 
generally modelled as stochastic processes. The stochastic 
model for predicting accelerometer bias was developed 
basing on 1st order Gauss–Markov model. Proposed sensor 
bias error model is defined by the following stochastic 
difference equation 
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here β=[0.9…1] is user defined value for predicted bias 
mean value control , wk – samples from white noise 
process.  This difference equation was used at prediction 
step for PF. 

 
System and measurement model for GPS/IMU system 

 
A state propagation model is used  for a Particle Filter 

to  predict  acceleration, velocity and position  referenced 
in the body frame, accelerometer bias and scale factor  

The 1 D acceleration dynamic model is used [4] with 
the state vector xk, which comprises 5 states  

xk=f (xk–1, wk–1),                                      (3) 

here f(.) represent system linear model, w– process noise 
which gathers any mismodeling effect or disturbances in 
the state characterization. Subscript k denotes the discrete 
time index 
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xk=[ dx vx ax b S],                              (4) 
 

here dx – position of the vehicle along x axis in the body 
frame, vx – velocity, ax – acceleration, b – accelerometer 
bias, S – accelerometer scale factor. 

The relation between the measurements zk and the 
states is modelled by following nonlinear function 

 

zk=h (xk, uk),                                     (5) 
 

here h(. ) is a known non–linear function and u  is 
measurement noise 

 

zk=[γ  dx_GPS],                                     (6) 
 

here γ – accelerometer output signal , dx_GPS – estimation of 
vehicle position along x axis in the body frame based on 
GPS measurements. The accelerometer output signal is 
modelled by nonlinear measurement equation (1). Both 
process and measurement noise are assumed white, with 
known statistics and mutually independent. The initial a 
priori PDF p(x0) of the state vector is assumed to be 
known. 

 
Particle filter algorithm formulation 
 

Particle filters (PF) are capable of handling highly 
nonlinear models with any kind of noise distribution. The 
particle filter is a special version of the Bayesian filter, and 
is based on sequential Monte Carlo (SMC) sampling. 

The goal is to compute filtered estimates of xk taking 
into account all available measurement up to time k, z1:k . 
From a Bayesian point of view, the solution is to 
recursively obtain the a posterior probability density 
function p(x0:k|z1:k) of states at time k given all available 
measurements. The PDF are constantly changing shape 
when receiving indirect measurements. PF represents the 
posterior probability density function p(x0: k | z1:k ) by a set 
of random samples with associated weight as follows 
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here δ(x) is Dirac  delta function, i
kw  is associated weight 

with i
kx , N is the particle number, z1:k denotes the 

measurements accumulated up to k. The weights’ values 

are always positive i
kw >0, and sum of weights is equal to 
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As the number of samples N  becomes very large, this 
Monte Carlo (MC) characterization becomes an equivalent 
representation to the usual functional description of the 
posterior PDF under weak assumptions, according to the 
Strong Law of Large Numbers [3 ]. 

For the MC method, independent particles are 
required from posterior density function. In general, it is 
not possible to draw samples directly from posterior       
p(x 0: k | z1:k ) . Instead, the samples are drawn from a 
simpler distribution called the importance PDF q(x0: k|z1:k ).  

Importance density function is similar to desired posterior 
distribution, but the weights of these generated samples 
need to be adjusted to represent the target function as 

closely as possible. [3].  If the samples i
k:0x   were drawn 

from an importance density q(x0:k|z1:k) then the weights in 
(7) are defined by  (9) 
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here q(x0:k|z1:k) – importance density function. 
Taking in account that conditional probability 

distribution of future states, given the present state and all 
past states, depends only upon the present state and not on 
any past states and the measurements are assumed to be 
conditionally independent given the states, the following 
recursive general equation for weights updating can be 
obtained [5]  
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here i
kw~  – unnormalised weights, )|( i

kkp xz – likelihood 

function, )|( 1
i
k

i
kp xx – transition prior distribution. It’s 

necessary to make normalisation of weights in (10), in 
order sum of all weights will be equal to 1 
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The choice of importance density function 

),|( :11 k
i
k

i
kq zxx   is one of the most critical issues in the 

design of a particle filter. The reason of this is that the 
samples are drawn from the proposed distribution, and the 
proposed distribution is used to evaluate importantance 
weights. The most popular suboptimal choice is to use the 
conditional prior of the state vector as the proposed 
distribution for importance density function 

 

).|(),|( 1:11
i
k

i
kk

i
k

i
k pq   xxzxx              (12) 

  

Substituting (12) in (10) the weight’s update equation 
is 
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here )|( i
kkp xz – likelihood function. In this case, the 

weights depend only on the likelihood function. 
The  particle  filter has a problem that it degenerates 

quickly over time. In practical terms this means that after a 
certain number of recursive steps, most particles will have 
negligible. Degeneracy can be reduced by using a 
resampling step [5]. 

Resampling is a scheme to eliminate particles with 
small weights and to concentrate and replace on particles 
with large weights. In this paper systematic resample is 
used. Systematic resampling [5] is  preferred resample  
scheme since it is simple to implement, has computational 
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complexity O(N)  and minimizes the variance of 
importance weights variation. Although resampling helps 
to overcome the degeneracy phenomenon, it unfortunately 
introduces other problems. Resampling causes the samples 
that have high importance weights to be statistically 
selected many times, thus the algorithm suffers from the 
loss of diversity .  This occurs especially in the case of 
small process noise since the particles at the same place 
cannot separate enough. It is also referred as sample 
impoverishment. 

It is also mentioned in [5] that using the particle filter 
is not appropriate when the process noise is zero. In order 
to reduce effect of sample impoverishment, additional 
noise is added in the state model.  

The summary of implemented particle algorithm for 
navigation data fusion is presented below: 
1) Initialisation. The particle filter is initialized by drawing 

samples i
0x , i=1,….,N from the prior density function p(x0) 

and set weights iw0  to 1/N,  N– is the number of particles. 

2) Prediction. Particles at time step k–1 i
k 1x are passed 

through system  model (3) to obtain the predicted particles 
at time step k.  
3) Update. In the measurement update the new 
measurements are used to assign a probability, represented 
by the normalized importance weight , to each particle. 
The weights are calculated using (11) and (13). The 
normalized importance weights and the corresponding 
particles constitute an approximation of posterior 
distribution p(x 0: k | z1:k ). 
4) Systematic resampling. The resampling step will then 
return particles which are equally probable. Move to stage 
2.  
 
Implementation and Results 

 
The MTi–G  – a GPS aided MEMS based inertial 

measurement unit was used in experiments. The MTi–G 
was rigidly installed inside moving  vehicle. The separated 
raw data from accelerometer and GPS unit was used for 
combined processing (fusion). As the result of sensor data 
processing by PF, we obtain estimations of vehicle 
acceleration, velocity and position along x–axis in the body 
frame.  Also some extra parameters such as  bias and scale 
factor of accelerometer can be estimated. The algorithm is 
developed in such way, that during GPS outages it 
continues to estimate position and velocity of moving 
vehicle.  This was implemented by estimating of two set of 
normalized importance weights according (13), basing on 
GPS measurements and IMU (accelerometer) 
measurements. In case of lack of GPS signal, algorithm 
uses set of normalized importance weights based on 
accelerometer measurements for system state estimation. 
The nonlinear measurement model h(xk, u) is directly  used 
in  PF, what is impossible for  Kalman filter, as 
measurement model for KF should be linear ( that is not 
always the case for real systems) or linearisated.  Also 
particles from uniform PDFs’ for bias and scale factor 
were used for PF initialisation. 

The evolution of approximated posterior probability 
density function according to (7) at different time steps is 

shown in the  Fig. 1 The numbers of particles N=100. 
From Fig. 1 it can be noticed, that approximated posterior 
PDF has not Gaussian form. 
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Fig. 1.  Evolution of posterior PDF  at t=40, 60, 80 s. N=100 
 

The estimation of acceleration signal,  accelerometer bias 
and scale factor  using PF is shown in the Fig. 2.  
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Fig. 2. IMU state parameters estimation using navigation data 
fusion with PF  
 

Position estimation along x–axis (direction of the 
vehicle movement)  in the body frame versus time t is 
shown in the Fig. 3. This estimation was made using 
combined processing of IMU and GPS data with PF . Also, 
only GPS based estimation of position  is presented in the 
Fig. 3. 
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Fig. 3. Vehicle position estimation along x–axis versus time 
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The result of sensor data processing using PF during 

GPS signal outages is represented in the Fig. 4. 
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Fig. 4. PF result of position estimation with  20 s GPS signal 
outage 
 

The calculated position estimation drift during 20 s of 
GPS signal outage is 12 m. PF immediately correct 
position of the vehicle, when GPS measurements become 
available (enlarged fragment of Fig. 4). 
 
Conclusions 
 
Presented PF algorithm for accelerometer and GPS data 
fusion has following advantages over KF: 

– no need for nonlinear measurement model linearization, 
this is especially attractive for real low cost navigation 
system parameters estimation. 
– no restriction for using non Gaussian PDF for estimating 
system states, 
– implementing and debugging the PF is not a major issue 
comparing with EKF. 
Also, presented fusion algorithm continues to have reliable 
navigation solution during small GPS signal outages.  
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Coupling GPS with Micro–Electro–Mechanical Systems (MEMS)  Inertial Navigation Systems (INS) is an challenging way of 
improving land vehicle navigation performance. MEMS inertial sensors suffer from complex stochastic errors, which are difficult to 
compensate and model  using  conventional Kalman Filter, as it  provides an effective solution to the linear Gaussian filtering problem. 
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Sausumos transporto priemonių navigacijos sistemų našumą galima padidinti taikant mikroelektromechanines sistemas ir inercines 
navigacijos sistemas. Atsitiktines klaidas, turinčias įtakos mikroelektromechaninių sistemų jutikliams, sunku kompensuoti naudojant 
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79 79.5 80 80.5 81 81.5

845

850

855

860

865

time, s

po
si

tio
n,

 m

 

 




