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1Abstract—PID controller is a popular control method still
widely used in process industry. In literature there are
model/non-model based calculation methods for PID
parameters. However, a model based analytic formulation in
compact form in discrete time has not been come across yet.
This study presents a new approach for calculation of PID
parameters with model based analytic formulation  (MBCF),
which is presented uniquely in this paper, in compact form, in
discrete time. Furthermore, a procedure for implementation of
the proposed formulas is given in four stages. The formulations
in related literature for PID parameter calculation are all
derived for continuous time. Therefore, extra transformations
are required for a discrete time design. The proposed MBCF
formulation method reduces extra calculation burden and
simplifies calculation complexity. Moreover, this method
provides a direct calculation method for digital PID controller
design in discrete time. The derived expressions in this study
also provide a fast, easy-implemented, and practical PID
parameter calculation method for all field researchers and
application engineers. The validation of proposed MBCF
formulations are comparatively proved with the simulations
and the real time application results.

Index Terms—Compact formulation, controller design, PID
parameter, tuning.

I. INTRODUCTION

Proportional-integral-derivative (PID) controllers have
been widely used and are essential elements in industry
especially in process control applications [1], [2]. The
reason behind this wide usage is not only about its simple
structure and easy implementation but also its sufficient
control performance in the limitless type of real-world
applications [3], [4].

PID controller has all the ‘key ingredients’ for a process
control. To expand the expression of ‘key ingredients’, the
proportional (P) part answer rapidly to the error, the integral
(I) bring a pole to the s-plane as a result of this steady state
errors could be removed and the derivative (D) part is active
in transient response of a system to fix the error [5], [6]. To
conclude, PID controllers are like the ‘bread and butter’ of
control engineering and it is a crucial fundamental for every
control engineer [7].

Manuscript received May 21, 2013; accepted December 31, 2013.

In the last three decades a digital era has started in
industry. Almost all the processes have been adapted to be
controlled with digital controllers such as PLCs,
microprocessors etc. Therefore, digital PID controllers are
regarded more convenient than the analog ones. This recent
change forces the designers to design their controllers in
discrete time. Although there seems to be several
model/non-model based calculation methods for PID
parameters in literature such as Ziegler-Nichols rule,
symmetric optimum rule, Ziegler–Nichols’ complementary
rule, transient response method, some-overshoot rule, no-
overshoot rule, refined Ziegler–Nichols rule, integral of
squared time weighted error rule, and integral of absolute
error rule, only a few of them  are designed in discrete time
[8]. In addition to this, no model based compact form
formulations for PID parameter calculation has not been
presented yet in discrete time.

Most of the studies on PID parameter calculation in the
last decade has been focused on adaptive/optimal/ artificial
auto tuning methods [4], [9]–[12].

Regarding formulations for PID parameter calculation,
there are only few studies. [13] presents a direct synthesis
design (DS-d) formulations for the systems with dead time
and inverse response in continuous time. However, these
formulations are restricted by a specific type of a process
with delay and the DS-d formulations of PID parameters
were only available in continuous time.

In [14]–[16] a tuning formula derived for PID parameter
calculation by using phase and gain margins for only
continuous time is presented. These formulations are derived
for a specific plant, and are not generalized for all types of
systems.

This study presents a new approach for discrete time PID
parameters calculation with model based compact form
(MBCF) formulations according to determined performance
criteria. These MBCF formulations are based on the
relationship between the open and closed loop transfer
functions. This relationship is defined by magnitude and
angle values of the closed loop characteristic equation, and
MBCF formulations are obtained according to these values.

In this study, MBCF formulations for pK and dK

parameters are presented, whereas designers have to
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determine three parameters ( , ,p i dK K K ) for a PID

controller. Therefore, the implementation procedure
navigates the designer to obtain , ,p i dK K K parameters from
proposed two MBCF formulations. In this paper, a specified
implementation procedure for MBCF formulations is also
introduced.

This paper is organized as follows; Section II presents and
introduces the MBCF formulations and the implementation
procedure. Six different systems in Section III are generally
used for demonstration of the effectiveness of PID controller
design methods in literature. Dynamics of closed-loop
responses of those systems are investigated using proposed
formulations to design PID. In Section IV, a PID controller
is designed with using proposed formulations and
implemented to a real time DC Motor velocity control
system. The closed loop step responses with/without
disturbance are comparatively given in this section. Finally,
in Section V conclusion and discussion are conducted.

II. PROPOSED MBCF FORMULATIONS AND THE
IMPLEMENTATION PROCEDURE

Proposed study contains two steps; in the first step,
MBCF formulations for PID parameter calculation are
obtained. In the second step, the procedure is presented for
implementation of these MBCF formulations to calculate the

, ,p i dK K K parameters.

A. Step One: Obtaining the MBCF Formulations

R(z) C(z)pcG(z) G(z)

Fig. 1. Block diagram of a simple feedback control system.

Figure 1 shows a basic closed loop control block diagram
of a feedback control system. In this block diagram ‘ ( )cG z ’
is representing the PID controller and ‘ ( )pG z ’ is

representing the controlled system.
In this control diagram ( )cG z discrete time PID

controller transfer function is given below

1
1

( ) .c p i d
z z

z z
G z K K K




   (1)

Characteristic equation of closed loop control system in
Fig. 1 is given in (2)

( ) 1 ( ) ( ) 0.c pF z G z G z   (2)

The control (dominant) poles in (3) are obtained from the
nth degree ( )F z characteristic equation in (2) where
damping ratio “ ” and natural frequency “ nw ” are defined
by designer from determined performance criteria

21,2
1,2 1,2

( 1 )
1,2 .n ns T T w jw

z zz e e jw        (3)

If the control pole ‘ 1z ’ in (3) is replaced by ‘z’ in
characteristic (2), the characteristic equation is arranged as
follows:

1 1 1( ) ( ) ( ) 1 0,c pF z G z G z   (4)

1 1( ) ( ) 1.c pG z G z   (5)

Since, 1z is a complex variable, accordingly (5) is a
complex variable, too. Hence, (5) is arranged in polar
coordinate as underneath

1 1 1 1 .j
z zz jw z e    (6)

Using (6) the magnitude and angle of complex variable
‘ 1z ’ is written as below:

2 2
1 1 1 ,z zz w  (7)

1 1

1
tan ( ).z

z

w



 (8)

Similarly, 1( )pG z complex variable could determine

polar coordinate as follows:

1 1( ) ( ) ,j
p pG z G z e  (9)

1( ).pG z  (10)

Proposed MBCF formulations for calculation of pK

and dK parameters, which assigns two poles of thn degree
characteristic equation, are obtained from (5) with the
replacement of the terms in (7)–(10):

1

1 1
1 2

1

1

1

cos

cos 1

cos 2
( ) 2

sin cos sin
,

( ) sin

p i
p

p

z

z z
K K z

G z

z

G z







  






  



 
 (11)

1
2

11 1

sin sin .
sin ( )2 cos 1

i
d

p

z K
K

G zz z

 
 

    
   

(12)

The derivation of (11) and (12) are given in appendix A.

B. Step Two: The Implementation Procedure of MBCF
Formulations

In the implementation procedure of the MBCF
formulations firstly PI controller is designed. Thereafter, PD
controller is designed according to the new system which is
formed from cascaded PI controller and the controlled
system.

Implementation procedure has four sub stages; in the first
sub stage, control rule consists of the PI controller as shown
in Fig 2. Derivatives parameter of PID controller ‘ dK ‘sets
to zero ( 0dK  ) in (11) and (12) from these rearranged
equations PI controller parameters 1pK and 1iK are
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calculated. In the second sub stage; 1( )G z transfer function
is obtained from cascaded PI controller ( ( )PIG z ) and
controlled system ( ( )pG z ) transfer functions as shown in
Fig. 3

1( ) ( ) ( ).PI pG z G z G z (13)

As a continuation of second sub stage, obtained new
system ( 1( )G z ) is controlled by PD control rule. Similar to
first sub stage, integrator gain ‘ iK ’sets to zero in (11) and
(12) and PD controller parameters 2pK and 1dK calculated

from these rearranged equations.
In the third sub stage, PID controller parameters

( , ,p i dK K K ) are calculated from former obtained PI and

PD controller parameters ( 1 1 2 1, ; ,p i p dK K K K ).

Fourth sub stage is the stability analysis and fine-tuning.

C. First Sub Stage: PI Design

PI controller parameter 1iK as shown in Fig. 2 is
calculated from (12) where ‘ dK ’ parameter sets to zero and
is rearranged as follows

1
1

1
1

12cos
sin .

sin( )i
p

z
z

K
G z






 
  (14)

1 1i

z
K

z 

1pK
1 sTe

s

 ( )pG s

( )pG z

1( )G z

( )PIG z

Fig. 2. Control block diagram of PI controller system.

1pK and 1iK parameters in Fig. 2 are calculated from

(11) and (14) with the help of calculated numerical values in
(7)–(10).

D. Second Sub Stage: PD Design

Control block diagram of the new PD controlled system
1( )G z is given in Fig. 3.
Derivative parameter 2pK and 1dK of PD controller is

calculated from (11) and (12) where iK sets to zero and
rearranged as below:

1
2

1 1

sin cos sincos ,
( ) ( ) sinp

p p

z
K

G z G z

  



 
   (15)

1
1

1

sin .
sin ( )d

p

z
K

G z




 (16)

2pK and 1dK parameters in Fig. 3 are calculated from

(15) and (16) with the help of calculated numerical values in
(7)–(10).

1
1

d

z
K

z



2pK

2 ( )G z

( )PDG z

1( )G z

Fig. 3. Control block diagram of PD system.

E. Third Sub Stage: PID Parameter Calculation

Forward transfer function of PID controlled system as
shown in Fig. 4 is written with the help of Fig. 3 as follows:

2 1( ) ( ) ( ),PDG z G z G z (17)
1( )

2 2 1 1 1

( ) ( )

1( ) ( ).
1

PD PI

G z

p d p i p

G z G z

z z
G z K K K K G z

z z

        




(18)

Equation (18) can be rearranged as below

1 2 1 1 1 2

1 1

1
1

( ) ( )

,

PID p p i d i p

p d

z

z

z

z

G z K K K K K K

K K




   

 (19)

where:

1 2 1 1,p p p i dK K K K K  (20)

1 2 ,i i pK K K (21)

1 1.d p dK K K (22)

1
d

z
K

z



pK

( )pG z

( )G z

( )PIDG z

1i

z
K

z 

Fig. 4. Control Block Diagram of PID controller system.

PID parameters pK , iK and dK are calculated from

former 1pK , 1iK , 2pK and 1dK parameters which are

calculated in the first and second sub stages.

F. Fourth Sub Stage: Stability Analysis and Fine Tuning

If the characteristic equation degree ‘ n ’ of the controlled
system is greater than two ( 2)n  , stability analysis should
be made.

5



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 20, NO. 3, 2014

After the stability analysis of the system in Fig. 4, a ‘ fK ’

parameter could be cascaded as shown in Fig. 5 for a stable
condition. This ‘ fK ’ parameter is used for fine-tuning of

the dynamic response of the system according to the
performance criteria.

1
d

z
K

z



pK

( )pG z

( )G z

( )PIDG z

1i

z
K

z fK

Fig. 5. Control Block Diagram of Control system with parameter “ fK ”.

Parameter ‘ fK ’ can be calculated from (23) [17]

11

11

,

N

i
i

f M

i
i

Z z
K

P z





 

 

(23)

where 1z control pole is calculated from (3) and iZ , iP are
the zero and poles of  the ( )G z respectively.

III. PERFORMANCE ANALYSIS OF PROPOSED METHOD

In this section, PID controller performances are examined
for several systems. The selected system and PID controller
parameters are given in Table I which is calculated through
the proposed method. Several systems are carefully selected,
which are frequently encountered in literature to analyse the
performance of PID controllers [18], [19].

Simulation study of the step responses under the various
disturbance effects are given in Fig. 6–Fig. 11.

Fig. 6. 1( )G s four equal poles system with 20 % disturbance.

Fig. 7. 2 ( )G s second order system with different time constants and
40 % disturbance.

Fig. 8. 3( )G s system with lag and delay with different time constants
and 20 % disturbance.

Fig. 9. 4 ( )G s integrator with delay system response to different time
constants and 13 % disturbance.

Fig. 10. 5 ( )G s pure delay system with different delay times and 15 %
disturbance.

Fig. 11. 6 ( )G s lead and delay system with 20 % disturbance.

Several parameters for PID controlled systems
( 1 2 3 4 5 6( ), ( ), ( ), ( ), ( ), ( )G s G s G s G s G s G s ) are given in
Table I.
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TABLE I. SEVERAL SYSTEM AND PID CALCULATED PARAMETERS.

Systems pM (%) st (s) K dT  sT (s) pK iK dK fK

Four Equal Poles

1 4( )
( 1)

K
G s

s



4.33

20 0.5 - 1 0.785
2 0.3232 0.0312 1.8247 2.8032

Second Order System
3

2
1 2

( 1)( )
( 1)( 1)

K s
G s

s s


 




 

2.5

0.5

- 1 2 30.1; 0.5; 1     0.02 1.3363 0.1088 1.5009 1.7571

20 - 1 2 31; 5; 2     0.2 6.904 1.1039 8.4802 1.8699

20 - 1 2 35; 2; 0.7     0.4 38.3 20.2 16.88 4.3647

System with
lag and delay

3( )
1

sTdK
G s e

s




25

0.5
1

5

0.5

3.1482 0.1657 1.3574 1.6609

1.5 3 4.031 0.1586 1.9073 0.8963

5 1 0.5092 0.3212 0.2186 0.6362

1.5 0.3 0.25 0.1168 0.4033 0.044 0.4221

5 0 1 0.1 0.5155 0.164 0.9605 0.4618

Integrator with delay

4 ( ) sTdK
G s e

s


50
0.5 1

10
0.5

3.0873 0.1006 9.3552 0.7864
25 5 2.3543 0.1764 4.855 1.3846
5 1 0.805 0.0762 0.0378 1.2369

Pure delay

5( ) sTdG s Ke

5 0.8 1
-

0.5 0.1628 0.3064 0.0163 0.5606
5 0.5 5 2.5 0.1059 0.2241 0.0112 1.0415

50 0.9 10 5 0.1348 0.281 0.0091 0.5203
System with

lead and delay
 1

6 2
2

1
( )

2 1
sTdK s

G s e
s s







 

20 1 2 1 1;  2 0.2  0.5 0.1268 0.0786
156.4310 0.7292

Note: pM  OVERSHOOT, st  SETTLING TIME, ,K   OPEN LOOP GAIN AND TIME CONSTANT, dT  DELAY TIME, sT  SAMPLING TIME, fK  FINE TUNING

COEFFICIENT.

IV. REAL TIME APPLICATION OF MBCF FORMULATIONS

Real time application has two stages. In the first stage
open-loop gain and time constant parameters ( ,K  ) of the
simplified DC motor model are obtained from the open-loop
response. PID controller parameters are calculated by using
MBCF formulations and implementation procedure,
according to defined performance criteria. PID controlled
system simulation results are given for the comparison
through real time results. In the second stage, Real time
application is implemented by using the Analog devices
ADUC-841 microcontroller and Feedback DC Motor
Mechanical Unit 33-100. Experimental set-up is shown in
Fig. 12.

Fig. 12. Experimental set-up. 1-feedback 33-100 DC servo motor
mechanism, 2  ADUC-841 microcontroller, 3 feedback amplifier
unit.

A. DC Motor Model and Parameters

First, as mentioned above experimentally obtained open-
loop gain and time constant parameters are accurately
calculated by the repetitive tests and simulation results.
Simplified transfer function of the DC Motor is given below

0.78( ) .
1 0.48 1

K
G s

s s
 
 

(24)

Performance criteria for calculation of the PID parameters
are selected as follows: overshoot

4.3%.pM  (25)

Settling time

2.4 .st s (26)

In addition to the performance criteria, sampling time is
determined according to open-loop time constant (approx.

5 10sT
 
  ) as 0.05sT s .

PID controller parameters are calculated with the steps in
Section II and using (15)–(22) and given as:

3.9923,pK  (27)

0.5766,iK  (28)
4.2254.dK  (29)
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B. Simulation and Real Time Results

In the simulation and real time application study, the PID
parameters in (27)–(29) are used. Closed-loop performances
are comparatively shown in Fig. 13 and Fig. 14 for step
input of the PID controlled DC Machine velocity
without/with disturbance respectively.

(a)

(b)
Fig. 13. Simulation result of controlled system step reference response (a);
real time controlled DC motor step reference response (b).

From the simulation and real time closed loop step
responses the following assessments are given by
considering the Fig. 13 and Fig. 14:
 PID controlled DC Motor system is stable.
 Dynamics of closed loop response of the system
similarly ensure the pre-defined performance criteria
depicted in Table II as given in Fig. 13.

TABLE II.DYNAMICS OF CLOSED LOOP RESPONSES.
Overshoot (%) Settling Time (s)

Pre-defined 4.3 2.4
Simulation 2.7 1.2
Real Time 1.66 2.7

 The response tracks the step reference with zero steady
state error even under disturbance load. Dynamics of
closed-loop responses of the simulation and the real time
study under disturbance is comparatively given in Table II
by considering Fig. 14.
In Table III, t1 and t2 are recover time, V1 is overshoot, V2

is undershoot with disturbance and without disturbance
respectively.

Systems in Section III are generally used for performance
analysis of PID controller design methods in literature
therefore in this section frequently encountered systems in

literature are selected for the assessment of proposed MBCF
formulations. Systems and calculated PID parameters by
using proposed formulations are given in Table I, closed
loop step responses with disturbance of PID controlled
systems are shown in Fig. 6–Fig. 11. In Section IV control
of a DC Motor velocity is applied in real time and a
comparison between closed loop step and disturbance
responses of simulation and real time application is given in
Table II, Table III and Fig. 13–Fig. 14 respectively.

TABLE III. DYNAMICS OF CLOSED LOOP RESPONSES.
V1 (%) t1(s) V2 (%) t2(s)

Simulation 2.1 0.6 1.9 1.2
Real Time 15 0.9 15 1.5

(a)

t1=0.9s t2=1.5s

V1=1.7V

V2=2.3V

ref=2V

(b)
Fig. 14. Simulation result of controlled system step response with 50 %
disturbance (a); real time PID controlled DC motor step response with
50 % disturbance (b).

All these results in Section III and Section IV show that
proposed MBCF formulas and proposed method in this
study achieved following goals for an effective PID
controller design;
 Obtain a stable closed loop response.
 Track different step reference with zero steady state
error.
 Suppress disturbance effect and regulate system in a
short period of time.
 Ensure the pre-defined performance criteria.
To sum up, based on all statements given above it can

easily be said that MBCF formulations are an effective and
practical model based calculation method for PID
controllers. In addition, designer will be able to design P, PI
and PD controllers with proposed method.

Through using presented expressions, self-tuning PID
controller could be designed for academic/industrial control
applications, PID parameters could be updated by detecting

8



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 20, NO. 3, 2014

parameter variations of controlled system and PID based
adaptive and robust control applications could be used.

V. CONCLUSIONS

The formulations in related literature for PID parameter
calculation are all derived for continuous time. Therefore, if
the PID controller is desired to be designed for discrete time,
extra transformations are required. This proposed method,
provided designers a direct, fast and practical PID controller
design without extra transformations. In addition to this,
designer also will be able to design P, PI and PD controllers
with proposed method.

The proposed MBCF formulations which are used in the
calculations of the digital PID parameters via determined
performance criteria are performed through the transfer
functions in related studies in literature. The dynamic
response of the each system is analysed with simulation
studies. The applicability and accuracy of the proposed
method are shown in real time DC motor velocity control
study which ensures determined performance criteria.

This proposed method will gain a new perspective and
contribute to the literature as new alternative compact form
formulations in digital control.

APPENDIX A
Let 1z denote a control (dominant) pole of nth degree

characteristic equation

1 1 1.z zz jw  (A.1)

‘ 1z ’ can be written in polar coordinate as below:

1 1 ,jz z e  (A.2)

2 2
1 1 1 ,z zz w  (A.3)

1 1

1
tan ( ).z

z

w



 (A.4)

Following expressions ( )cG z and ( )pG z are the PID

controller and the controlled system transfer functions,
respectively.

( )cG z is defined as below

1
1

( ) .c p i d

z z

z z
G z K K K




   (A.5)

If 1z control pole substitutes into ( )pG z and ( )cG z , the

new expression 1( )pG z can be given in polar coordinate as
follows:

1 1( ) ( ) ,j
p pG z G z e  (A.6)

1( ).pG z   (A.7)

Characteristic equation of closed loop control system is
written as follows and in polar coordinate in (A.9):

1 1 1( ) ( ) ( ) 1 0,c pF z G z G z   (A.8)

1 1( ) ( ) 1 1 (2 1) ,j
c pG z G z e k           (A.9)

1 1

1 1
1

1
1

( ) ( ) 1.p i d p
z z

z z
K K K G z




    (A.10)

pK and dK expressions are derived as dependent to iK

parameter.
The known and unknown parameters are arranged as

follows

1 1

1 11

1
1

1 .
( )p d i

p

z z

z z
K K K

G z






   (A.11)

The expressions in (A.2) and (A.5) are put in the equation
above and arranged as follows:

1

1

2
1

1 1
1 1

( ) ,
( )

j

j

j
j

p d i
p

z e

z e

z e
K z K z e K

G z














    (A.12)

cos sin ,je j     (A.13)

cos sin .je j     (A.14)

Where Euler’s Formula expressions in (A.13) and (A.14)
are placed into (A.12) and rearranged as follows:

1

1 1

1 1
2

1 1

1

cos sin
cos sin 1

( cos sin )

cos sin
,

( )

p d

i
p

j z

z j z

K z K z j

z j z
K

G z

 

 

 

  

 

   

 
  (A.15)

where pK and dK parameters are obtained by arranging as

real and imaginary parts separately in (A.15)

1 1
2

11 1

sin sin
sin ,

( )2 cos 1
i

d
p

K z z
K

G zz z

 



 

 
(A.16)

1 1

1 1

1
1 1

1

2

2
cos

cos 1

cos
( cos )

( )

.
2

i i

p d
p

K z K z

z z

z
K z K z

G z










    





(A.17)

The expressions in (A.16) and (A.17) arranged in a matrix
form:

1 1

1 1

1 1

2
1

2
1

1 1
2

11 1

cos

cos 1

cos
0 sin

cos
( ) 2

,
sin sin

( )2 cos 1

i i

p

d

p

i

p

K z K z

z z

Kz z

K

z

G z

K z z

G zz z










 





  
  

   
 
  
 
  
 

 
   

(A.18)

1

1 1

cos1
sin
10

sin

p

d

z

K z z

K
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1 1

1 1

2
1

2
1

1 1
2

11 1

cos

cos 1

cos
( ) 2

,
sin sin

( )2 cos 1

i i

p

i

p

K z K z

z z

z

G z

K z z

G zz z







 





 
  

 
 
    

(A.19)

From the matrix in (A.19), pK and dK parameters are

obtained as their final forms in MBCF formulations:

1

1 1
1 2

1

1

1

cos

cos 1

cos 2
( ) 2

sin cos sin
,

( ) sin

p i
p

p

z

z z
K K z

G z

z

G z







  






   



 
 (A.20)

1
2

11 1

sin sin .
sin ( )2 cos 1

i
d

p

z K
K

G zz z

 
 

    
   

(A.20)
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