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Introduction 
 

Network management techniques have long been of 
interest to the networking research community. Networks 
can be viewed as a distributed system in which coordinated 
and informed decision making is crucial for optimal 
resource allocation.  In this paper we study the problem of 
finding an optimal policy for  Network resource allocation 
as a Partially Observable Markov Decision Process 
(POMDP). Testing the stationarity of Network traffic is 
one of the keystone problem. Partially Observable Markov 
Decision Process (POMDP) is a basic framework for 
Multi-Agent planning, when the traffic model is not 
perfectly known and may change over time and is a well-
studied framework for sequential decision-making in 
partially observable domains.  This paper restricts itself to 
two network management techniques: admission control 
and the partitioning of transmission and buffer resources 
among two or more classes of traffic using a common 
transmission path. The Decision Policy Agent (DPA) 
model and  Network model are presented in fig.1. For 
Network resource allocation, we are interested in the 
performance of a queue which represents the bottleneck of 
a network. In this paper we will use a simple hierarchical 
MMPP traffic model from [1] and queue model 
MMPP/GI/1/m. The aim of  this paper is to estimate the 
various stationarity testing procedures for  intergation into 
Network resource allocation agents. 

 
Problem statement 
 

The problem of the testing of the stationarity 
hypothesis for real traffic measurements is caused by the 
fact the mean of traffic with LRD does not exist. But, 
statistical analyses of measured traffic traces often contain 
non-stationary effects like level shifts or polynomial 
trends. The testing of the stationarity hypothesis is 
particularly difficult in the presence of LRD, where many 
classical statistical approaches cease to hold [2]. In these 
cases several popular tests for long-range dependence can 
result in wrong conclusions and unreliable estimate of the 
Hurst parameter. On the other hand for decision making in 
CP MDP it is significant to detect the level shifts and/or 

polynomial trends with reasonable computational 
complexity. On longer time scales we can observe also a 
regular character of the traffic due to daily or weekly 
variations. Three types of trend models are used in our 
experiments, e.g. linear trend, parabolic trend,  and level 
shift model. Level shift model can be observed when 
during our traffic measurements suddenly a new source 
starts to generate the  traffic to the network nodes and the 
linear and parabolic trends, which can be observed in 
daily traffic variations. For example, when people start to 
work in their office between 8 and 10 am a monotonic 
increase of the total load of the aggregated traffic can be 
observed. These traffic trends should be identified  by 
Decision Policy Agent.  
 
MMPP traffic model 
 

In this paper for traffic generation we will use a 
MMPP traffic model proposed by [1]. This is hierarchical 
MMPP traffic model, capable of generating traffic that 
accurately emulates the aggregate Network traffic 
measured at an edge router. The model is based on a 
layered architecture of sessions, that generate flows, that 
finally generate packets.  
MMPP model is completely described by these five 
parameters: 

 s  –  the arrival rate of new sessions, 

 f  – the flow arrival rate per active session,  

 p – packet arrival rate per active flow, 

 fN  –average numbers of flow per session, 

  pN – average numbers of packets per flow. 

Then: 
 fN/11  – probability that a flow is not a 

last of session, 

 )1/(  ppf N – the average duration of a 

flow, 

 pfn  –global packet generation rate, 
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 sfsn   – flow generation rate ( fn – number of 

active flows and sn – number of active sessions). 

For network planning and dimensioning, we are 
typically interested in the performance of a queue which 
represents the bottleneck of a network. Besides the 
advantages of being simple to implement and efficient, a 
synthetic Markovian source as the one we propose has the 
additional advantage of allowing a Markovian model of a 
queue. In general, the buffer model can be described by a 
MMPP/GI/1/m queue, where the service time represents 
the transmission time of a packet, and can be easily derived 
from the capacity of the link and the distribution of the 
packet length. The general service time distribution can be 
approximated by a phase type distribution. By adopting an 
exponential service time distribution, we obtain an 
MMPP/M/1/m queuing system. [1]  

The infinitesimal generator (IG) of such a 
(Continuos-Time Markov Chain) CTMC is   matrix A 
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where  QA00 , 0A ,  nIQA 1 , 

nmm IQA   , nIA  2  and  is the rate matrix 
nnR  , nn

nmm RIAAAAAA ,,,,,, 2101000 , and In is 

the identity matrix. More detailed description of this IG 
can find in [1].  

  
Decision Policy Agent model 
 

Decision policy agent (DPA) and Network model are 
presented in Figure 1. 
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Fig. 1. Decision policy agent (DPA) and Network model    
 

DPA model consists of three objects: Partially 
Observable Markov Decision Process (POMDP), Finite 
state Controller (FSC) and Cross Product Markov Decision 

Process (CP MDP).  For POMDP we use the following 
notations. A POMDP is a tuple  ZORTAS ,,,,, , where: 

 a set of states   },...,{ ||21 ssssS  , 

 a set of actions },...,{ ||21 AaaaA  , 

 a observation space  O, 
 a set of transition probabilities

),|(),,( asspsasT ijji  , 

 a observation function )(: OASZ   , 

 a rewards function ASR : , 
 a set of system trajectories or histories H,  

 a decision policy Ao : ,  

 a value function sHV : , 

 a time steps 
t . 

We use a following definition: policies that do not 
dependent on stages are called stationary policies. We are 
study over the infinite horizon policies and agent`s goal is 
to find a policy π by exacuting at each step (state) the 
actions that would maximize value function (cumulative 
reward over the horizon).  
Finding the optimal policies traditionally needs significant 
computational resources and is limited in time.  Our idea is 
to reduce these resources by computing a new decision 
policy only when traffic stationarity has changed. For this 
we needed proportionate stationarity testing procedure of 
incoming traffic.  Fully observable part of the system is 

process }),({ ttO , where   O(t) is number of packets in 

queue. In this paper we are testing several known 
stationarity test and to look for an appropriate policy π are 
not resesrch object of this paper. 

FSC: Finite state controller model as a deterministic 
policy graph π is a triple  ,,N , where:  

 N  is set of controller nodes n , 

 AN :  - action selection function, 

 NON :  is the internal node transition 

function. 
We can define the following FSC controller nodes:  

 n1 – state with stationary observations in POMDP, 
 n2 – state of testing of stationarity in POMDP, 
 n3 – state of finding  (learning) new decision policy 

in POMDP. 
Cross Product MDP: POMDP with ZORTAS ,,,,,  

and policy graph with the node set N cross-product MDP 

RTAS ,,,  can be described [7]: 

 SNS  – state space as the Cartesian product of 
external system states and internal memory nodes, 
which consists of pairs SsNnsn  ,,, , 

 NOv :  – conditional observation strategy  for 
each state pairs,  

 ONAA   – common action space as the cross 
product between A and space of observation 

mappings ON , 
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Statistical analysis was performed using the R 
statistics software with tseries package used for stationarity 
tests. The test results are listed in Table 1.  
 
Table 1. Test of stationarity using three different kinds of tests by 
three different traffic models (Accepted = stationary) 

Linear 
trend 

Stationarity test 
KPSS.test PP.test adf.test 

Model_1 Accepted  Accepted  Accepted  
Model_2 Accepted  Accepted  Accepted  
Model_3 Accepted  Accepted  Accepted  
Model_4 Accepted  Accepted  Accepted  

Level-shift 
Stationarity test 
KPSS.test PP.test adf.test 

Model_1 Accepted Accepted Accepted 
Model_2 Rejected Accepted  Accepted 
Model_3 Rejected Accepted  Rejected 
Model_4 Rejected Accepted  Rejected 

Parabolic 
trend 

Stationarity test
KPSS.test PP.test adf.test 

Model_1 Rejected Accepted  Accepted  
Model_2 Rejected Accepted  Accepted  
Model_3 Rejected Accepted  Accepted  
Model_4 Rejected Accepted  Accepted  
Model_5 Rejected Accepted  Rejected 

Note: Level of significance in all cases are chosen 1% (α=0.01) 
 
Conclusions 
 

The tests used in our experiments does not enable to 
decide between non-stationarities and LRD. We have 
shown that the presence of different non-stationarities such 
as level shifts, linear and polynomial trends (parabolic in 
such case) in the observations can deceive classical LRD 
methods. These simulation results confirm that short-range 
dependent (SRD) process with non-stationarities can 
produce the same variance-time plot as LRD processes. In 

the case of LRD processes trends can significantly destroy 
the accuracy of the estimation of the H parameter. These 
results show that granular computing methods could be 
more acceptable for selection of conditional observation 
strategy.  
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