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Abstract—Current particle filter track-before-detect 

(PF-TBD) algorithms assume a single sensor system and a target 

being contained within the sensor detection coverage. In this 

paper, we develop PF-TBD for multiple asynchronous radar 

system. The radars in this system have different detection 

coverage, thus a target may move across the detection coverage 

of different radars (i.e. the target is not contained within the 

common detection coverage). For detecting dim target in this 

multi-radar system, a novel algorithm called classification 

PF-TBD (CPF-TBD) is proposed. It uses a classification 

criterion to divide the particles into two parts. This criterion is 

designed based on the detection coverage and the sampling rates 

of radars. According to the criterion, one part of the particles is 

used to estimate the target state, and the other part is used to 

preserve adequate particles in all radar detection coverage, 

which is conducive for next stage calculation. With this 

approach, the dim target can be centrally detected and tracked 

using all of the data, which is collected from asynchronous 

radars with different detection coverage. Simulation results 

show that CPF-TBD is able to produce higher accuracy 

compared with conventional PF-TBD.  

 
Index Terms—Particle filter, track-before-detect, 

multi-radar, weak target, detection coverage, asynchronous. 

I. INTRODUCTION 

The detection and tracking of weak targets is currently 

receiving more and more attention. Traditional strategies use 

a detect-then-track approach which forms target tracks based 

on the detections. The detections are obtained by applying a 

threshold on the output of the receiver [1], [2]. This is 

acceptable when the SNR (signal-to-noise ratio) is high. 

However, in low SNR environments, the signal amplitudes 

reflected from the target might not be strong enough to be 

detected. One possible approach is to lower the threshold, but 

a low threshold would give a high rate of false detections 

which cause tracker to form false tracks [3]. On the other 

hand, track-before-detect (TBD) techniques work with entire 

output of the receiver without applying a threshold and 

simultaneously detect and track target.
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Because of reducing threshold loss, TBD techniques are 

efficient for weak targets detection [4]. 

Previously developed TBD techniques include Hough 

transform [5], dynamic programming [6] and particle filter 

[7], etc. For TBD problems, the main difficulty is that the 

signal amplitude is a non-linear and often non-Gaussian 

function of the target state [3], [8]. Since particle filter has the 

advantages of dealing with nonlinear/non-Gaussian problems 

[9], [10], recently it receives more and more attention when 

being used to perform track-before-detect recently [11]–[15]. 

In [13] a recursive TBD with target amplitude fluctuations is 

presented, while in [15] a multi-rate multiple model particle 

filter is derived by considering computational cost. For targets 

splitting situation, an extension of particle filter TBD 

algorithm is given in [1], but with an assumption that the 

maximum number of targets is known. In [12] a particle filter 

TBD is applied to detect extended target. However, the 

previously developed TBD methods take little account of the 

problem of a target cooperatively observed by multiple 

sensors. In [8] a developed TBD algorithm is proposed for 

multiple sensors, but the target is contained within common 

area of the sensors. 

In this paper, we consider the problem of detecting and 

tracking dim target in multiple asynchronous radar system. 

The radar model refers to [1], [12]. For the radars have 

different detection coverage, the target may not be contained 

within common detection coverage, i.e. the target may move 

across the detection coverage of different radars. For 

example, suppose that a target disappears in the detection 

coverage of Radar A and appears in the detection coverage of 

Radar B. By particle filter TBD (PF-TBD), the dim target 

cannot be found existence or inexistence immediately, 

typically after several measurement scans [1], [3]. Thus, poor 

tracking estimation may be obtained when the target moves 

across the detection coverage. And when the target appears in 

the detection coverage of Radar B, it may be detected as a new 

target. 

To solve this problem, we develop a new algorithm called 

classification PF-TBD (CPF-TBD) for multiple asynchronous 

radar system. It uses a classification criterion to divide the 

particles into two parts. Then different particle calculation 

methods are used according to the classification results. The 
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criterion is designed based on the detection coverage and the 

sampling rates of radars. It ensures that one part of the 

particles is effective when being used to estimate the target 

existence (i.e. only the particles which are effective for 

estimation are selected), thus, the computation cost can be 

reduced. Furthermore, no matter whether the radars provide 

data or not currently, the criterion also ensures that the other 

part preserves adequate particles in all radar detection 

coverage after filtering (i.e. the particle diversity is preserved 

in all radar detection coverage). Thus, the phenomenon that 

most particles fall in some radars detection coverage can be 

eliminated. When the radars provide data in arbitrary order 

and the target moves across the detection coverage, adequate 

effective particles can be ensured for estimating the target 

existence and state. With this approach, the dim target can be 

centrally detected and tracked using all of the data available 

from asynchronous multiple radars with different detection 

coverage. 

II. SYSTEM SETUP 

Suppose that there are L  radars in the multi-radar system. 

Assume that any other targets are sufficiently well separated 

so that there will not be ambiguity between targets and that a 

single target analysis suffices. The radars collect data at 

different sampling rates and are not synchronized with each 

other. Meanwhile, the radars have different detection 

coverage and the target may move from some radars’ 

detection coverage to the others’. The aim is to centrally 

detect and track the target using all of the data available from 

the radars. 

Assume a sequence of data 1{ , , , }kZ Z⋯ ⋯ , where kZ  

represents the measurements collected from multi-radar 

system at scan kt . The measurements are time ordered, so 

1 1k k kt t t− +< < . These scans are arbitrary, but known. For the 

radars are not synchronized with each other, when the 

proportion of sampling rates is rational number, there exists a 

situation that multiple radar measurements are collected at the 

same time. Assume that there are kD  measurements collected 

at scan kt , then the measurements kZ  is given by 

 1, 2, , ,{ , , , , , }
kk k k d k D k=Z z z z z⋯ ⋯ ,    (1) 

where kd ,z  denotes the measurement collected from Radar 

d . The measurement is an image data. 

Let the target state at scan kt  be denoted as ks . The state 

function can be formulated as 

 kkkkkkkk ttttrf wgss ),(),,,( 1111 −−−− += ,    (2) 

where )(⋅f  is the system dynamics function and the statistic 

of the process noise kw  is known. ),( 1−kk ttg  denotes the 

process noise input matrix. The discrete model state kr  

represents one of the two hypotheses: 

− 0=kr : there is no target exist;  

− 1=kr : there is one target exist. 

kr  is represented by a Markov chain, which is formed as 

 ,)]([}|{ abkkk tbrarp Ψ===       (3) 

where )( ktΨ  is Markov transition matrix and abkt )]([Ψ  

denotes the jump probability from model b  to model a . 

The measurement function of each radar is known, which is 

given by 

 ),,(, kkkdkd rh vsz = ,  (4) 

where )(⋅dh  denotes the non-linear measurement function of 

Radar d . kv  represents the measurement noise and its 

statistic is known. 

III. MEASUREMENT MODEL  

The measurement model refers to [1], [12] and it is given as 

follows. 

One measurement kd ,z  is consisted of dd NbNr ×  power 

measurements 
ij

kd
z , , where dNr  and dNb  are the number of 

range and bearing cells of Radar d . The power measurement 

per range-bearing cell is defined by 

 ,
2

,,,
ij

kdA
ij

kd
zz =       (5) 

where 
ij

kdAz ,,  denotes the complex amplitude data, which is 

given by 
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where )2,0( ,
~

,,,
, πϕιϕ

∈= kdkdkd
kdeAA  is the complex 

amplitude of the target. The noise )( kd tn  is defined by 

 )()()( ,, kdQkdIkd tntntn ι+= ,       (7) 

which is complex Gaussian distributed, )(, kdI tn  and 

)(, kdQ tn  are independent, zeros-mean and white Gaussian 

noise with variance 2
dσ . In (6), ),(, kkdA th s  is the reflection 

function, which is given for per range-bearing cell by 
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where dNri ,,2,1 ⋯= , dNbj ,,2,1 ⋯= . dR  and dB  

represent constants related to the size of a range and bearing 

cell. dLr  and dLb  are constants of losses. kdr ,  and kdb ,  

denote the position and bearing information of target and 

radar, which are given by: 

 ,)()( 22
, dkdkkd ypyxpxr −+−=        (9) 
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where ),( dd ypxp  represents the position of Radar d  and 

),( kk yx  represents the target position state. 

IV. CPF-TBD PROCEDURE 

The CPF-TBD is proposed to detect and track dim target in 

asynchronous multi-radar system, and the radars have 

different detection coverage.  

The CPF-TBD (block diagram shown in Fig. 1) uses a 

classification criterion to divide the particles into two parts: 

Selected Part and Protected Part. Selected Part uses PF to 

estimate the existence of target, and Protected Part preserves 

particle diversity for the radars which are not sampling 

currently (i.e. adequate particles are preserved in all radar 

detection coverage). Assume an initial pdf (probability 

density function) ),( 00 rp s  is given, CPF-TBD is carried out 

as follows. 
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Fig. 1.  CPF-TBD block diagram. 

Step 1. Initialization. Draw N  particles according to 

),( 00 rp s , and obtain N
n

nn r 100 },{ =s . 

Step 2. Classification. Classify the particles into two parts 

according to the classification criterion. After classification, 

assume the numbers of the particles in Selected Part and 

Protected Part are 1M  and 2M  respectively. Then Selected 

Part and Protected Part are represented by 1

1

11
11,1,

},{
M

m

m
ks

m
ks

r =−−s  

and 2

2

22
11,1, },{

M

m

m
kp

m
kp

r =−−s  respectively. 

Step 3. Model mixing and update. Perform model mixing 

according to the Markov transition matrix )( ktΨ . Perform 

particle state update using (2). 

Step 4. PF. For Selected Part, given kZ , define the particle 

weights 

 ( ) 11,, ,,1,|~ 111 Mmrp
m

ks
m

ksk
m
k

⋯=∝ sZϖ      (11) 

Normalize the particle weights and resample 1M  times 

from the Selected Part. 

Step 5. Estimation. For Selected Part 1

1

11
1,, },{

M

m

m
ks

m
ks

r =s , 

assume the numbers of the particles corresponding to 1=kr  

and 0=kr  are 1U  and 2U  respectively. Let 0=kr
p  and 

1=kr
p  denote target inexistence probability and target 

existence probability respectively, which are formed as 

 121110 MUpMUp
kk rr == == .     (12) 

If 1=kr
p  exceeds threshold λ , the target is estimated to be 

exist. Then the target state estimation is obtained using 

 .ˆ
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Step 6. Merge the two parts and obtain N
n

n
k

n
k r 1},{ =s ,  then 

go to Step 2. 

V. DESIGN OF CLASSIFICATION CRITERION 

The classification criterion is used to divide the particles 

into two parts: Selected Part and Protected Part. According to 

the criterion, Selected Part is used to estimate the target state 

and Protected Part is used to preserve adequate particles in all 

radar detection coverage after filtering. Moreover, the scan 

when the particle is divided into Selected Part is defined as 

Selected Scan. 

Suppose that there are kD  measurements collected from 

kD  radars at scan kt , and let the detection coverage of Radar 

),,2,1( kDdd ⋯=  be dΩ . The efficient coverage of the 

multi-radar system is the union of dΩ , i.e. 

 
kDdk Ω∪∪Ω∪∪Ω∪Ω=Ω ⋯⋯21     (14) 

where kΩ  represents the efficient coverage of the multi-radar 

system. The aim is to determine whether the target exists in 

kΩ  using the measurements collected at scan kt . Thus, the 

particles outside kΩ  cannot be effective when being used to 

estimate the target existence, but they can be used to preserve 

particle diversity for the radars which do not provide data at 

scan kt . 

Furthermore, let the sampling intervals of the radars be 

),,,( 21 LTTT ⋯ , where L  is the radar number. Then a time 

threshold thresholdT  is given by 
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 ( ),,,,max 21 Lthreshold TTTT ⋯=         (15) 

which is calculated as the maximum of all radar sampling 

intervals. Assume at scan 1−kt , we obtain particle set 

N
n

n
k

n
k

n
k str 1111 },,{ =−−−s  after filtering, where n

kst 1−  stores the 

last Selected Scan of particle n  (the scan when particle n  is 

divided into Selected Part). Then at scan kt , if the time 

interval satisfies (16) 

 threshold
n
kk Tstt >− −1 ,        (16) 

which means that particle n  falls in none of multi-radar 

detection coverage, particle n  will be useless for preserving 

the diversity. 

According to the above description, the classification 

criterion is designed based on the detection coverage and the 

sampling intervals of different radars. For the particle set 

N
n

n
k

n
k

n
k str 1111 },,{ =−−−s , two conditions are given. 

Condition 1: the particle is in the efficient coverage kΩ . 

Condition 2: the time interval that the particle is remained 

in Selected Part exceeds the time threshold thresholdT , i.e. 

threshold
n
kk Tstt >− −1 . 

The criterion is designed as following. If particle n  

satisfies either Condition 1 or Condition 2, it will be divided 

into Selected Part. Otherwise, it will be divided into Protected 

Part. 

By this criterion, the CPF-TBD can centrally detect and 

track dim target in the multi-radar system. An example is 

given to describe the advantages of CPF-TBD in Fig. 2. 

According to Fig. 2, there are two radars with different 

detection coverage. Suppose that the measurements are 

collected from Radar A and Radar B at scan kt  and 1+kt  

respectively. When a target is at Position F at scan kt  (i.e. the 

measurement is collected from Radar A, and the target is in 

the detection coverage of Radar B but outside the detection 

coverage of Radar A), the Selected Part is effective for 

estimating target existence while the Protected Part is not. 

According to the criterion, only the particles in Selected Part 

are used for estimation, therefore, the computation cost can be 

reduced. Meanwhile, although Radar B doesn’t provide 

measurement at scan kt , the particles in Protected Part 

preserve diversity for Radar B, which ensures adequate 

particles are preserved in the detection coverage of Radar B. 

Thus, at next scan 1+kt , CPF-TBD can be more efficient to 

estimate target state when using the measurement collected 

from Radar B. Furthermore, when the target moves from 

Position F to H (i.e. the target moves from Radar B’ detection 

coverage to Radar A’s), CPF-TBD preserves the target 

detection and tracking results through the particles in Selected 

Part, and uses these information to estimate state when the 

target appears in the detection coverage of Radar A. Because 

of more information being used, the performance of 

CPF-TBD can be improved. 

Radar A

Radar B

Detection Area

Target Trajectory
F

H

 

Fig. 2.  Detection coverage of the two radars. 

VI. PARTICLE WEIGHT CALCULATION 

The measurements collected at scan kt are denoted as 

},,,,{ ,,,1 kDkdkk k
zzzZ ⋯⋯= . These measurements, 

conditioned on the state ks , are assumed to be exponentially 

distributed [1] 
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When 1=kr , 
ij
0µ  is given by [1], [12] 
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with 2
,

~
kdd AP = . 

When 0=kr , 
ij
0µ  is given by 

 .2)( 2
,,0 ,, d
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kdnn

ij
zE

dQdI
σµ ==         (19) 

Suppose that the noise is independent from cell to cell and 

the measurements are independent, we obtain 
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1 1 1
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VII. SIMULATION COMPARISON 

In this section, we give a demonstration of CPF-TBD that is 

capable of detecting weak target in multi-radar system. In the 

simulation, CT (Coordinate turn) model is used to describe 

the target maneuvering moving motion. The target state is 

defined as ],,,,[ ωyxyxk ɺɺ=s , where ),( yx  and ),( yx ɺɺ  denote 

the target positions and velocities in x-y plane respectively. 

ω  is the turn rate. The state function and the process input 

matrix in (2) are given by [1], [12]: 

( ) ,
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where 1−−= kk ttτ .  max,xa , max,ya  and max,ωa  represent 

maximum accelerations. 

In this scenario, initially there is no target presents. The 

target appears after 5s at a position of )4.0,3.13( km and with 

velocity of  )29.0,2.0(− km/s, and the initial turn rate is 0.12 

rad/s. At st 40=  the target disappears. 

015.0max,max, == yx aa m/s
2
 and 005.0max, =ωa rad/s

2
. 

The process noise is assumed to be standard white Gaussian 

noise. The total simulation time is 50 seconds. 

We consider two radars in the multi-radar system here, i.e. 

2=L . The sampling intervals of the two radars are 11 =T s 

and 4.12 =T s respectively. For the two radars, we consider 

range cells in the interval ]15,5[ km and bearing cells in the 

interval ]15,15[ oo− , then ll NbNr ×  )2,1( =l cells are 

obtained, where 401 =Nr , 251 =Nb , 502 =Nr , 302 =Nb . 

The positions of the two radars are )4,1(− km and )0,1( km 

respectively. Seen from the above, Radar 2 has longer 

sampling interval and higher resolution. 

Fig. 3 shows the target trajectory and the detection 

coverage of the two radars. In Fig. 3, “o” denotes the target 

position when Radar 1 provides measurement, and “*” 

denotes the target position when Radar 2 provides 

measurement. The regions surrounded by the solid lines are 

the radar detection coverage. Inspection of Fig. 3 shows that 

the target firstly appears in the detection coverage of Radar 2. 

In the time interval ]5.31,4.17[ s, the target is in the detection 

coverage of Radar 1. In ]8.9,5[ s and ]40,6.33[ s, the target is 

in the detection coverage of Radar 2. And in ]4.17,8.9[ s and 

]6.33,5.31[ s, the target is in the common coverage of the two 

radars. 

In this simulation, two measurements are collected at 

21=t s. Let 5.221 == PP  and 5.021 == σσ , i.e. 

7=SNR dB, Fig. 4 shows the two radar measurements. 

Inspection of Fig. 4 show that the target signal is drown in the 

noise.  

In this simulation, the performance of CPF-TBD is 

compared with conventional PF-TBD. For PF-TBD considers 

a single target, we use PF-TBD to process the measurements 

collected from Radar 1, likewise, we use PF-TBD to process 

the measurements collected from Radar 2. After that, two 

estimation results are obtained respectively. If one target 

existence probability exceeds threshold λ  in two successive 

scan, only this existence probability will be used to compare 

the existence probability obtained by CPF-TBD. Meanwhile, 

if the two radars provide measurements at the same scan, two 

RMSE (root mean square error) of the target will be obtained, 

and the smaller RMSE will be used to compare the RMSE 

obtained by CPF-TBD. 

 
Fig. 3.  Target trajectory and radar detection coverage. 

 
                                (a)                                                 (b) 

Fig. 4.  Measurements collected from the two radars at  21=t s. 

In the simulation, the particle number is 2000=N  

particles. The transition probability matrix is 









=

95.005.0

05.095.0
)( ktΨ . The threshold λ  is set to be 0.6. 

After 100 Monte Carlo runs, Fig. 5 shows the comparison 

results of target existence probability, and Fig. 6 shows the 

RMSE comparison results. 

 
Fig. 5.  Target existence probability comparison. 

Inspection of Fig. 5 and Fig. 6 shows that CPF-TBD 

produces higher existence probability and tracking accuracy 

than PF-TBD, and when a target moves out of one radar’s 

detection coverage but it moves into the other’s, the 
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performance of CPF-TBD is significantly improved. 

 
Fig. 6.  RMSE comparison results. 

Compared with conventional PF-TBD, CPF-TBD has 

advantages when a target moves across the radar detection 

coverage. In the simulation, when a target moves out of the 

one radar’s detection coverage, the target detection and 

tracking results are preserved through the particles in Selected 

Part. Then when the target appears in the detection coverage 

of the other radar, CPF-TBD uses the information preserved 

in Selected Part to estimate the target appearance and state. 

Because of more information being used, according to Fig. 5 

and 6, CPF-TBD performs more efficiency than conventional 

PF-TBD, especially when the target moves across the radar 

detection coverage.  

VIII. CONCLUSIONS 

For detecting and tracking dim targets in asynchronous 

multi-radar system, a novel algorithm called classification 

PF-TBD (CPF-TBD) is proposed in this paper. The algorithm 

uses a classification criterion to divide the particles into two 

parts, and different calculation methods are used according to 

the classification results. The criterion is designed based on 

the detection coverage and the sampling rates of radars. It 

ensures that one part of the particles is effective when being 

used to estimate the target existence and state. Meanwhile, it 

also ensures that the other part of the particles preserves 

adequate particles in all radar detection coverage after 

filtering, which is conducive for next stage calculation. 

Simulation results show that CPF-TBD works well to detect 

target using all of the data, which is collected from 

asynchronous radars with different detection coverage. And 

compared with conventional PF-TBD, the detection 

probability and tracking accuracy of CPF-TBD are improved, 

especially when a target moves across the radar detection 

coverage. 

Conventional PF-TBD considers a single target situation 

and it cannot be used to detect multi-target [3]. Some 

extended PF-TBD algorithms for multi-target detection are 

proposed recently but with too much limitation. In this paper, 

we assume that any other targets are sufficiently well 

separated, thus a single target analysis suffices. However, 

many practical situations require the detection of multiple 

targets. Therefore, further work will mainly focus on how to 

detect and track multi-target in asynchronous multi-radar 

system. 
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