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Abstract—The article describes P/M/1/K queuing model and 

Hurst parameter estimation unit with Wavelet Transform for 

real-time estimation of the traffic self-similarity parameter in 

Simulink. It consists of simulation results, which show the 

possibility to estimate Hurst parameter in real-time by means of 

Wavelet transform. It is offered to iteratively calculate the 

averaged Hurst parameter estimation, which improves the 

accuracy to the accuracy of the estimation over entire traffic 

series and in some cases even higher, as it has been shown in 

simulation results analysis. The estimation deviations have been 

analyzed as well as variance of such deviations. The results also 

give directions for further research to improve accuracy of 

traffic parameters estimation. 

 
Index Terms—Wavelet transform, Hurst parameter, real-

time estimator, ethernet networks.  

I. INTRODUCTION 

It is widely common for network traffic to be correlated in 

long-time scale, i.e. the traffic is self-similar (fractal). This 

has been confirmed long time ago by many researchers, for 

example data sets described in [1] show these scale 

dependent properties for actual Ethernet traffic from Local 

Area Network. There are also other examples mentioned in 

[2], such as video-traffic with variable bit-rate, Wide Area 

Networks, etc. 

Such long-term correlation significantly impacts queue 

length, and as of such – waiting delays for data packets. It 

can be calculated, that for standard Markov traffic with 

utilization ρ = 0.8 and buffer overflow probability PLoss = 10
-

6
 it’s necessary to supply memory capacity of K = 55 data 

packets. Compared to this, the self-similar traffic with same 

utilization level and buffer overflow probability would 

require memory capacity of K = 5 · 10
8
 packets estimated by 

formula from [3]–[8], for Hurst parameter of H = 0.9 (very 

high self-similarity) in order to provide efficient service. 

In order to efficiently manage data flows, it is necessary to 

estimate parameters of these flows to allocate appropriate 

amount of resources. 
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II. P/M/1/K MODEL WITH ESTIMATION 

This work is based on the P/M/1/K model from [3], which 

has been extended by adding self-similarity parameter 

estimation tool based on wavelet transform. The algorithm 

of this tool is proposed in [2] and it has been adopted for 

real-time use in Simulink environment. 

For self-similar traffic generation most commonly used 

distribution is Pareto distribution [1], [8]. Its distribution 

function, in general has 3 parameters, however for network 

traffic generation the most commonly used form of Pareto 

distribution function [8] is 
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where distribution parameters are calculated as follows for 

traffic with entity intensity λ  and self-similarity H : 
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The diagram of P/M/1/K Simulink model with Wavelet-

estimator tool is presented in Fig. 1. The model consists of 

one “Source” (Pareto distribution), which generates entities 

with intensity of 50=λ , one “FIFO Queue” of length K  

and one “Server” unit with service  intensity 5.62=µ  

(Exponential distribution). There are also additional blocks, 

such as entity sinks to count arrived and lost entities, 

“Buffer” to accumulate entities for Hurst parameter 

estimation and output switch which directs data flow to sinks 

depending on Queue length limit K. There is also estimation 

block to calculate data packet loss probability. 

Note, that all parameters of queuing model can be 

adjusted from “Model Parameters” block. The described 

above blocks are pure P/M/1/K model, which has been 

extended by wavelet-estimation block in bottom left corner 

of Fig. 1. The “Estimator” block is Embedded MATLAB 

Function block, which implements Hurst parameter 

estimation algorithm described in details in [2]. Model 

parameter T is an observation period, which can be divided 

in discrete sub periods ∆t in which number of sent packets is 

being registered. There are recommendations available on 

choosing these values in [4], [5]. 
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Authors of [2] have shown that the choice of specific 

wavelet for Hurst parameter estimation is based only on its 

number of vanishing moments N. The possibility to choose 

N value allows searching for trends and excluding their 

negative effects in data processing [2]. 

 
Fig. 1.  The diagram of P/M/1/K Simulink model with Hurst parameter wavelet-estimator for traffic intensity of λ = 50, self-similarity parameter H = 0.8 

and service intensity of µ = 62.5. 

Theoretically, the higher is N value, the more accurate 

estimator can be created, however N value also increases 

computation costs, which affects its performance. The model 

described in this article is based on Daubechies-N wavelets, 

where N is determined by the number of wavelet vanishing 

points. This allows to easily increment N value by choosing 

the corresponding wavelet from Daubechies wavelet basis. 

Note, that the algorithm from [2] can be improved to 

make more precise evaluations, as it has been done in [6]. 

The model being described in this article implements those 

improvements. 

The algorithm proposed in [2], [6] calculates momentary 

Hurst parameter values over T sized packed groups by 

applying wavelet transform. According to [7], one should 

calculate average Hurst parameter over time instead of 

momentary values. This addition to the model has been 

made and wavelet-estimator outputs both these values in 

time. The averaged Hurst parameter is iteratively calculated 

by 
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where ][ˆ nHavg  is averaged Hurst parameter estimate; 

]1[ˆ −nHavg is previous averaged Hurst parameter estimate; 

][ˆ nH  is current momentary Hurst  parameter estimate and n 

is the number of current estimate stored in counter. Note, 

that due to self-similar traffic nature, the estimation of self-

similarity parameter can’t be realized in situations when 

there is no data about entity count (a “pause”). In such cases 

instead of calculation according to (4) the previous averaged 

value remains the same 

 ].1[ˆ][ˆ −= nHnH avgavg   (5) 

There is also another MATLAB program for Hurst 

parameter estimate calculation over entire entity count series 

(full traffic). This method is supposed to provide the highest 

estimation accuracy and will be used to compare the 

iteratively averaged value at the end of the entity count 

series. 

III. SIMULATION RESULTS 

During the modelling process the Hurst parameter 

evaluates are saved to MATLAB workspace, which allows 

taking all benefits from Simulink integration into MATLAB. 

These data arrays have been plotted as graphs – the set 

Hurst parameter value (source), momentary Hurst parameter 

value and averaged over time Hurst parameter value. The 

example for Wavelet transformation window length T = 

1000 for self-similarity parameter H  values of 0.6, 0.7, 0.8 

and 0.9 are shown in Fig. 2–Fig. 5, respectively. The 

simulation time for all scenarios in this article is 

TTsim ⋅= 50 , where T is the observation period in 

normalized time units. The length of one discrete sub period 

∆t = 1 and the number of entity count measurements in one 

window length is 1000/ =∆= tTM .  

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H
u
rs

t 
p
a
ra

m
e
te

r

Normalised Time

 

 

Momentary Hurst

Source Hurst = 0.6

Averaged Hurst

 
Fig. 2.  Graphs of self-similarity parameter estimates for source generator 

set value of H = 0.6 and window length T = 1000. 

It is possible to define a 5% deviation interval (or any 

other) to determine how fast the averaged value converges to 

actual Hurst parameter value set for generation of entities 

according to (2.1) and (2.2). These 5% deviation intervals 
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are also shown in Fig. 2–Fig. 5. 
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Fig. 3.  Graphs of self-similarity parameter estimates for source generator 

set value of H = 0.7 and window length T = 1000. 
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Fig. 4.  Graphs of self-similarity parameter estimates for source generator 

set value of H = 0.8 and window length T = 1000. 
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Fig. 5.  Graphs of self-similarity parameter estimates for source generator 

set value of H = 0.9 and window length T = 1000. 

The estimation error can be seen in Fig. 6 for all specified 

Hurst parameter values. The relative estimation error is 

calculated as percentage according to the following 

expression 
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where H  and Ĥ  are actual source Hurst parameter value 

and its estimate, respectively. The 5% deviance interval has 

been marked as well for reference. 

As it can be seen from Fig. 2–Fig. 5, deviation of 

momentary Hurst parameter evaluates from actual value is 

higher at lower parameter values. However, in all cases the 

averaged Hurst parameter value is converging to actual 

value after some interval, which doesn’t seem to vary greatly 

for different Hurst parameter values. The exception can be 

seen in Fig. 2, where averaged Hurst parameter estimates 

leave the 5% deviation interval. 

In Fig. 5 it can be noted, that roughly at the time interval t 

= (32500; 35000) the Hurst parameter can’t be estimated. 

The estimation can be calculated incorrectly or even can’t be 

calculated at all if there are no generated entities or the 

amount of such entities is insufficient to determine self-

similarity parameter, i.e. the traffic intensity is very low. In 

such cases it’s impossible to adequately define self-similarity 

parameter over fixed length window alone, and it could 

require information about the previous entities. 
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Fig. 6.  Graphs of self-similarity parameter estimate relative error for 

different source generator set values H. 

Thus, according to (4) and (5) expressions the averaged 

Hurst parameter value in such cases remains unchanged, 

which can be clearly seen from Fig. 5 at the corresponding 

time interval. Note, however, that in larger scale these 

pauses can contain information about process self-similarity, 

since entity inter arrival time has Pareto distribution with 

infinite variance. 

The simulation results have been summarized in Table I. 

The table contains variance values of estimation deviances 

presented in Fig. 2–Fig. 5 for all specified source Hurst 

parameter values. The Table I also includes the last result for 

iteratively calculated by (4), (5) average Hurst parameter 

estimate and Hurst parameter single estimate over entire 

realization of generated traffic, calculated in post-processing 

mode by the same algorithm from [2], [6]. 

TABLE I. COMPARATIVE SIMULATION RESULTS FOR DIFFERENT SOURCE 

HURST PARAMETER VALUES. 

Source Hurst 

parameter 

Iteratively averaged Hurst 

parameter estimate Full realization Hurst 

parameter estimate 
Average 

Variance, 
2σ  

H = 0.6 0.637 0.0030 0.641 

H = 0.7 0.731 0.0016 0.729 

H = 0.8 0.803 0.0004 0.799 

H = 0.9 0.871 0.0001 0.863 

 

As it can be seen from Table I data, the variance of 

estimated Hurst parameter values decreases along with Hurst 

parameter actual value increase. The estimates themselves 

however are at certain point contradictive. From the Table I 

data it can be clearly seen, that both for very high and low 

self-similarity traffic the short-term estimates give more 

precise result. On the contrary, for Hurst parameter values 

between these extreme values the long-term estimates 

achieve higher values. 

It can also be seen from Table I, that for H = 0.8 both 
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estimates give very accurate results, meaning both of these 

methods are almost equally effective for this specific self-

similarity parameter value. 

The further research is necessary to determine, whether it 

is possible to improve accuracy by implementing both of 

these methods in parallel computations. 

There is also additional research required about choice of 

the number of entity count measurements in one window 

length tTM ∆= / , especially for Hurst parameter values 

close to the mentioned above extreme values. 

IV. CONCLUSIONS 

The analysis of the modelling results shows that it is 

possible to use this model to estimate self-similarity 

parameter in real-time and make decisions on forecasted 

required memory allocation in traffic control systems. 

However, short-time evaluation can give inaccurate results, 

so it might be possible to improve accuracy by implementing 

long-time evaluation as well, which can be added in future 

work. The results from Table I suggest such possible 

solution. 

Another possible solution for estimation accuracy 

improvement is to implement additional estimator with use 

of different transform – for example, Empirical Mode 

Decomposition (EMD). In particular, there is possibility to 

use Hilbert-Huang Transform (HHT) in conjunction with 

Wavelet Transform for traffic analysis as it has been shown 

in [9]. In future the estimator described in the article can be 

either extended, or modified accordingly. 

Finally, the traffic parameters estimation system can be 

extended to estimate additional parameters, which would 

allow taking more accurate decisions on quality assurances 

for end users.   
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