ELECTRONICS AND ELECTRICAL ENGINEERING

ISSN 1392 - 1215

2011. No. 5(111)

ELEKTRONIKA IR ELEKTROTECHNIKA

AUTOMATION, ROBOTICS

T 125

AUTOMATIZAVIMAS, ROBOTECHNIKA

Transient Analysis and Modelling of 2nd- and 4th-Order LCLC Filter

under Non-Symmetrical Control

B. Dobrucky, M. Benova, S. Kascak

University of Zilina, Faculty of Electrical Engineering, Univerzitna 1, 010 26 Zilina, Slovakia,
e-mails: dobrucky@fel.uniza.sk, benova@fel.uniza.sk, kascak@fel.uniza.sk

Introduction

The problem how it is possible to obtain sinusoidal
voltage at load side under non-harmonic periodical supply
from the converters is very important in technical
practices. The paper shows possibilities to use either LCLC
resonant filter for frequency of fundamental harmonic
component, or LC filter tuned for switching frequency.
Both filters have to remove higher harmonic components
from the supplying voltage to reach the harmonic
distortion roughly 5 %. Using non-symmetrical control the
output voltage of inverter comprises all harmonic
components, both odd and even ones. The paper deals
mainly with analysis and modelling of 4™ order LCLC
filter (of the first type) under non-symmetrical supply and
with comparing to the other types of filtering. Simulation
results as well as experimental verification confirm good
quality of output filter quantities, voltage and current.

Basic connection of single-phase inverter with output
resonant filter

The single-phase voltage inverter can be realised in
principle as full-bridge [1], [2] or half-bridge connection
[3] with DC sources, Fig. 1a. For alternative sources there
are either single-phase AC-AC converter — type of cyclo-
converter (if it is a natural commutation and f>f;) or
single-phase matrix converter (with a forced commutation
and f;>f, or f1<f,), Fig. 1b, [4], [5]. In case of the harmonic
sinusoidal voltage of load demand, it is possible to use
resonant AC filter tuned to base harmonic, or filter tuned to
switching frequency on converter output, Fig. 2a,b.
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Fig. 1.Principle schematic connections of the single-phase half-
bridge voltage inverter: a — the single-phase DC-AC inverter
supplied from DC sources; b — the single-phase AC-AC inverter
supplied from AC sources
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Fig. 2.Principle schematic connections of the single-phase
voltage inverter and the output filter: a — the output resonant filter
with basic resonance frequency; b — the output resonant filter
with switching resonance frequency



Transient analysis and modelling of 4™-order LCLC After time discretization of system equations using
filter under symmetrical control implicit Euler’s methods

Output voltage of the inverter contains by wide X1 :h(A)_C"”JrBLT")J”_C”’ S

spectrum of higher harmonic components. Full-width yields
waveform is depicted in Fig. 3a. Harmonic content (odd
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Fig. 3. Full-width output voltage (B = 180°¢l.) of the inverter (a) Transient analysis and modelling of 4™-order LCLC
and its harmonic content without filtering (b) [6, 7] filter under non-symmetrical control
Using Fourier theory one can derive relation (1) for The real output voltage of inverter waveform has a
basic harmonic amplitude of output voltage of inverter wide spectrum of harmonic components. Using non-
Un(B) 4 symmetrical control the output voltage of inverter (Fig. 4a)
%z;sin(ﬁ /2), €8 comprises all harmonic components, both odd and even

ones of Fourier series as it is shown in Fig. 4b, [6, 7].
where Upm(f) is amplitude of fundamental harmonic

depending on voltage pulse width g, U is maximum value .
of inverter input DC voltage; £ is voltage pulse width w7 ]
o 2 S
under the range of 0-180 °el. deg., whereby i B \ ,
p=r-a, @ N /
where « is control angle oriented from end of half-period o : - B
to the end of positive voltage pulse.
Considering converter scheme in Fig. la and LCLC a)
filter in Fig. 2a with inductor resistance r;, and capacitor B=165°
resistance 7cthen the state-space equations can be [8]: -
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QTG T, 2T L without filtering (b), [6, 7]
diyy, _ 1 The distortion is quite large, e.g. for 2/3-non-

= —ucy— 7L,
e Ly Ly symmetrical it is 62.5 %.
where Ly = L, —ry, = rpo; C1 = Cy —rey = Feo. .Using Fqurier theory one can derive relgtion (4) for
basic harmonic amplitude of output voltage of inverter
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Considering converter scheme in Fig. la and LCLC
filter in Fig. 2a under non-symmetrical control then the
state-space equations are the same as (3), (5) with
symmetrical output voltage of inverter u(f).

(N

Transient analysis and modelling of 2nd-order LC
filter under bipolar PWM control

The output voltage of AC link inverter [9, 10] is
depicted in Fig. 5a.The harmonic spectrum of that is shown

in Figs. 5b, 5c.
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Fig. 5. The output voltage of the 1-phase inverter under bipolar
PWM control (a) and its harmonic content without filtering (b)
and its frequency content (c)

The harmonics in the inverter output voltage
waveform appear as a sidebands, centred around the
switching frequency and its multiples. It follows, that
output voltage does not have higher harmonic components
around the fundamental frequency. Now is not necessary to
use the output resonant filter tuned to fundamental
frequency, but there should be used output resonant filter
tuned to switching frequency, which is depicted in Fig. 2b.
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Considering converter scheme in Fig. 1a and LC filter
in Fig. 2b then the state-space equations can be written:
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After time discretization of system equations using
implicit Euler’s methods
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iy is current during the inductor L of LCLC filter; uc is
voltage of the capacitor C of LCLC filter; i;; is current
during the load R, L,

Results of numerical simulation and experimental
verifications of transient
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Fig. 6. Simulation circuit half-bridge connection of inverter with
LCLC filter
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Fig. 7. LCLC filter output voltage (red) in steady-state with full-
wide of impulses (symmetrical, = 180°¢l.)



The output capacitor voltage of LCLC filter for load
disconnect in time at maximum output filter voltage
embodies overvoltage for symmetrical control (Figs.8, 12)
and for non-symmetrical control too (Fig.10). The
overvoltage is higher for the (resonant) quality factor Q
equal two.
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Fig. 8. Output capacitor voltage of LCLC filter for load
disconnect in time at maximum output filter voltage, quality
factor Q is equal one (red) and two (black)
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Fig. 9. Output capacitor voltage of LCLC filter under non-
symmetrical phase control 165/180°l
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Fig. 10. Output capacitor voltage of LCLC filter for load
disconnect in time of maximum output filter voltage under non-
symmetrical phase control 165/180%l. for quality factor Q is
equal one (red) and two (black)
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Fig. 11. Output capacitor voltage of LCLC filter under
symmetrical control with no full-wide of impulses
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Fig. 12. Output capacitor voltage of LCLC filter for load
disconnect in time of maximum output filter voltage under
symmetrical control with no full-wide of impulses for quality
factor Q is equal one (red) and two (black)

As it is shown on Fig. 13 and 14 load current has
minor current overshoots in case of load start-up but bring
one of the output capacitor voltage.
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Fig. 13. Output capacitor voltage of LCLC filter uc for two value
of quality factor and input current of LCLC filter for no load start
up with full-wide of impulses
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Fig. 14. Output capacitor voltage of LCLC filter uc (blue) and
load current iy (red) for load start up with no full-wide of
impulses

In case of simulation of 2nd-order LC filter it is
evident that output capacitor voltage of LC filter for load
disconnect in time of maximum output filter voltage no
embodies high overvoltage, Fig. 17. It has only temporary
growth of voltage amplitude because saved energy of
inductor is only 5% of load energy. This is better choice of
filter realization (Fig. 18). The measured voltage of

inductive load is shown on Fig. 19.
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Fig. 15. Simulation circuit half-bridge matrix connection of
inverter with LC filter
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Fig. 16. The load current and voltage time behaviour with passive
LC filter
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Fig. 17. Output capacitor voltage of matrix LC filter for load
disconnection in time of maximum output filter voltage
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Fig. 18. The real half-bridge matrix connection of inverter with
LC filter

Fig. 19. The measured voltage of inductive load in half-bridge
matrix connection of inverter with LC filter

Conclusions

The LCLC resonant filter for frequency of
fundamental harmonic component, or LC filter tuned for
switching frequency has been realised. Both filters have to
remove higher harmonic components from the supplying
voltage, but output load voltages have had the harmonic
distortion roughly 5 %. Using non-symmetrical control the
output voltage of inverter comprises all harmonic
components, both odd and even ones, but output load
voltage have had the small harmonic distortion. Simulation
results as well as experimental verification confirm good
quality of output quantities of the filter, voltage and
current.
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