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Introduction 
 

ECG signal represents electrical changes on the skin 
that are caused by the heart muscles, and is usually 
measured by the electrodes placed on body surface. ECG 
analysis is one of the most common procedures in the heart 
diagnostic domain. After digitalization of ECG signal, next 
step in computer abstraction of ECG signal is appropriate 
modeling. Due to high importance of accurate modeling 
several ECG modeling approaches applicable for different 
purposes like heartbeat synthesis, analysis, compression, 
and filtering were introduced. In [1], a realistic ECG model 
designed for ECG synthesis based on Gausses curves 
modeling of appropriate waves is presented. Fitting this 
model to a real ECG signal is possible using iterative 
nonlinear optimization algorithms. An algorithm for ECG 
compression by alignment of heart beats in a matrix and 
fitting polynomial curves to columns is used by Riad B. 
[2]. Instantaneous module and the instantaneous phase of 
Hilbert Transform are used for ECG modeling in [3]. 
Mealy and Moore automata model is used in [4] for ECG 
complexity analysis. 

The main motivation for development of our ECG 
model was to build an efficient feature extraction 
algorithm for automated ECG analysis that will be possible 
to implement on devices with limited computing 
capabilities like mobile phones [6]. 
 
Polynomial Functions estimation 
 

Let y represents ECG segment vector length N  

samples, y(n): y(1), y(2), ... , y(N). Polynomial 
Function (PF) ŷ  of degree m is an approximation of y  , 
and can be written as follows 
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The PF coefficients are calculated by minimizing the 
least square error 
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Error minimization is performed by solving quadratic 
system of equations introduced in (2). The solution can be 
computed explicitly 
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A special case of the described fitting for straight line 
estimation through point with coordinates (0, 0) with 
equation nky 0	�  has very simple solutions for its only 
parameter, the slope 
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Analysis of the slope estimated over the ECG signal 
segments will be used for the ECG fiducial point detection. 
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Method 
 

The ECG modeling proposed in this paper introduces 
segmentation of ECG signal and fitting polynomial curves 
with appropriate degrees to the specific segments. 
Heartbeats are modeled using PF up to the fourth order. 
The first step in modeling is the R peak detection as it is 
the largest deflection away from the baseline. All segment 
intervals and peak positions are then expressed relative to 
the R peaks.  

 

 
 
Fig. 1. Heartbeat model segments 
 

Each heartbeat is divided into seven segments, as 
shown in Fig. 1. The R peak is modeled using two third 
order PFs. The PFs are estimated from the Q peak to the R 
peak, fitted over the RL segment and from the R peak to the 
S peak, fitted over the RR segment. The R peaks 
boundaries, Q and S peaks, are detected by analysis of 
changes in the slope of a straight line fitted on RL and RR 
segment respectively. The straight line is fitted over a 
moving three samples long window using (4). Average 
slopes over three successive moving window positions are 
calculated then. Also, the extreme values of the average 
slopes are updated and stored. A point is marked as a S 
peak candidate if the slope of the fitted straight line change 
sign or change values for more than 85% of the average 
slope or 90% of the extreme slope. To avoid potential 
classification errors due to noise and jaggy peaks in the 
signal, the S peak is detected if changes in the signal are 
above the mentioned thresholds for six successive samples 
after a S peak candidate. During this procedure, average 
and extreme values of the slope are not updated. The 
selected number of samples over which the thresholds 
were calculated was determined empirically as the value 
that provides the best accuracy in the presence of noise and 
artifacts in a ECG signal. The S peak could have several 
morphologies and could carry the most significant amount 
of information useful for heartbeat classification, like for 
Premature Ventricular Contractions (PVC). Analog 
procedure is applied over RL segment for finding Q peaks.  

The ECG signal preceding a Q peak, the so called PR 
interval, is analyzed in order to determine the isoelectric 
level. This value is useful in detection of ST depressions, 
elevation analysis and for S peak modeling. To determine 
this level, first, starting from a Q peak and using (4), a 
slope is calculated based on the three preceding samples. 
Then, the closest three points to a Q with the smallest slope 
are marked as isoelectric points. The isoelectric level is an 
average value of isoelectric points. 

The end of a S peak is searched in the ECG samples 
after the S peak as the point of a significant change in the 
slope or points in which ECG crosses the isoelectric level. 
The slope change is analyzed using similar approach as for 
detection of Q and S peaks. 

A high diversity of T wave morphology makes its 
modeling difficult. In this paper, the ST segments and the 
T waves are modeled by two third order PFs. The first one 
models the ST segment, from the end of S peak over the 
ST segment and a part of the T wave up to the T wave 
extreme, PT . The second polynomial function models the 
rest of the T wave. The first step in a T wave modeling is T 
wave detection. A T wave is searched in the area between 
the end of a S peak and the Q peak of the next QRS 
complex. A T wave extreme value is located using analysis 
of a fitted squared function, estimated on a 120 ms long 
moving window. The 120 ms window length is chosen 
because it contains the most significant parts of a T wave. 
If a processed T wave is wider than 120 ms that 
information will be in successfully fitted in the squared PF 
coefficients. The square fitting function is chosen because 
of simplicity in the shape analysis of a fitted function. 
Fitting PFs of higher order have tendency to oscillate in 
segments where the original signal has tendency to be 
constant. For the following square function cbxax ��2 , 
an extreme position and the curve width are given by 
following equation 
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In this formula h is the distance from vertex of square 
function parabola on axis of symmetry. The curve extreme 
point represents relative positions of the square function 
vertex in a moving window. The window is moved over a 
ST segment to the T wave while estimated square function 
on moving window does not fit according to the following 
conditions 
 

        � �wwextr ttx 55.0,45.0%  and � �wwh ttw 5.2,5.0% ,    (6) 
 

where wt  is the width of a moving window, initial value 
120 ms, h is empirically set to the value 0.6 D , where D is 
dispersion calculated over the ST segment. Location of T 
wave extreme Tp is equal to position of the first moving 
window sample increased for extrx . If a T wave could not 
be detected in between successive R peaks, the h value is 
reduced by 10% and wt  is increased by 30%. Corrections 
and initialed values for parameters h and wt  are chosen 
based on intensive testing. If a T wave extreme could not 
be located, the middle point is returned for T wave 
extreme.  

Due to small amplitude, a P wave detection is one of 
the hardest tasks in ECG processing. P wave can be absent, 
inverted or sharpen due to different arrhythmias. Often, a P 
wave absence occurs in supra SVT arrhythmias, Atrial 
Fibrillation (AF). A P wave is modeled using fourth order 
polynomial function fitted on ECG signal window in 
which a P wave is detected. Similarly procedure to the T 
wave detection procedure is adopted for P wave locating. 
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Moving window of width wt  for P wave locating is 40 ms.  
The analysis is performed on an ECG segment between the 
preceding heartbeat Tp and the current heartbeat’s 

isoelectric points from PR interval. ECG segment that 
connects a P wave and a Q peak is modeled using a third 
order PF. 

 
Table 1. PRD and Execution time (EXC) of modeling ECG signals from MIT BIH ECG base for Realistic and Polynomial model 

MIT BIH Signal 106 107 116 119 200 205 208 209 210 213 

Realistic 
PRD [%] 16.8 7.7 15.2 14.5 17.1 15.7 17.9 18.8 13.1 18.8 
EXC [ms] 13500 15093 17812 11812 20844 20547 22375 20953 21375 26703 

Polynomial 
PRD [%] 6.6 3.6 3.5 5.3 3.5 6.1 6.3 5.9 10.8 4.9 
EXC [ms] 15 15 16 31 31 32 32 31 31 31 

 

 
 
Fig. 2. Modeling performance of MIT BIH signal 233 (top panel), Polynomial model with error below, Realistic model with error 
(bottom panel). 
 
Results 
 

Model quality is usually expressed in terms of the 
Percentage of the Root mean square Difference (PRD) 
given by the following equation 
 

                            .2

)ˆ( 2

i

yy

y
PRD i

ii�
	

�

                          (7) 

 

PRD is an overall measure of model quality across 
the data points. Objective measure of quality is in the 
amount of diagnostic information retained in the model 
features after ECG raw data modeling. In this paper PRD is 
measured on several signals from the MIT BIH ECG base 
and compared with the realistic ECG model. The realistic 
ECG model is based on fitting six Gausses to real ECG [1], 
[5]. Model error defined in (2) is minimized using 
Levenberg–Marquardt algorithm with 13 iterations. The 
results of modeling with PRD and execution time are listed 
in Table 1. Both models are implemented in JAVA and 
executed on standard PC. Realistic ECG model has a 
greater execution time due to iterative approach for solving 
(2). Furthermore, the realistic model requires ECG data to 
be sampled at frequency above 500 Hz in order for the 

interpolation to be performed on the original signal and 
without segmentation fitting is performed over the whole 
heartbeat. Benefits of proposed polynomial modeling are 
noticed in modeling ECG with high morphological 
diversity heartbeats because proposed polynomial 
modeling does not require template initialization. Example 
of modeling of ECG signal with PVC is shown in Fig. 2. 

Clinical information persistence of the model is 
evaluated using ST-T analysis applied on model features. 
Features chosen for analysis are isoelectric level, STT1 
segment duration and polynomial coefficients and T2 
polynomial coefficients. ST-T analysis evaluation is 
performed on annotated signals e0108 and e0113 from 
MIT BIH European STT data base [9]. ST segment classes 
are N (normal), ST+ (elevated) and ST- (depressed). T 
wave is classified as one of the following classes: N 
(normal), T+ (augmented) and T- (inverted). The most 
intuitive T wave feature is amplitude [7]. In proposed 
modeling approach T weave amplitude is available as PF 
value at first and last point over T2 and STT1 segments 
respectively. Classification is done using Feed Forward 
Artificial Neural Networks (FFANN) with ten inputs, ten 
nodes in a hidden layer and six outputs. ANN shows good 
results in a both classification and prediction [8]. 
Performances of ST-T analysis are shown as confusion 
matrix in Tables 2. and 3. 
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Table 2. Confusion matrix for ST segment analysis 
 

                    Actual 
 
Predicted 

N ST+ ST- 

N 1050        112 0 
ST+ 136 3792 12 
ST- 15 5 118 

 
Table 3. Confusion matrix for T wave analysis 
 

                    Actual 
 
Predicted 

N T+ T- 

N 3992 73 53 
T+ 40 822 9 
T- 17 23 121 

 
Conclusions 
 

An efficient ECG modeling approach is presented in 
this paper. The algorithm achieves high accuracy in the 
ECG data modeling and does not require significant 
computing resources. Furthermore, estimated model 
features persistently retain important medical information 
such as ST-T level and shape. Future work will be focused 
on algorithms development dedicated to ECG heartbeat 
analysis using feature set provided by the model with 
potential compression and filtering applicability.  
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