
ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 18, NO. 9, 2012

Abstract—Natural language information hiding technique is a

hotspot in information security field in recent years. However,

the extant algorithms still face some serious problems, such as

insufficient capacity, nonuniform distribution of cover unit, and

lack of studies on data-hiding codes. In this paper, to get over

above problems we propose the concept of cover unit which

erase the differences between the natural language processing

techniques. So, we can use multiple natural language processing

techniques at the same time. According to this approach, we

propose general embedding/extracting algorithms and develop a

hybrid natural language information hiding (HYNLIH) system.

The experiment results show HYNLIH achieve higher capacity,

cover units distribute more uniformly, security and robustness

are also improved when steganalysis and attacks are presented.

Index Terms—Cover unit, data-hiding code, natural language

information hiding, natural language processing.

I. INTRODUCTION

Information hiding studies methods to make private

messages are embedded in seemingly innocuous cover

messages [1]. The main sub-disciplines of information hiding

are steganography, which is about concealing of the content of

secret message very existence for covert communication, and

watermarking, which is about adding invisible attribution data

to media files for verify its authenticity, ownership, copy

control or annotation data. The to-be hidden message is called

secret message or secret bits. Natural language information

hiding is the art of using written natural language to conceal

secret messages by making meaning-preserving transforms to

plain text that can pass human and machine detection [2]. The

aims of natural language information hiding are similar to

those in multimedia techniques. The cover texts are not only

composed of natural language texts, but also are generated to

have a cohesive linguistic structure. However, the generating

methods are not suitable for watermarking. Thus, in this paper,

we ignore the generating methods and propose a system which

Manuscript received March 19, 2012; accepted May 15, 2012.

This paper is supported by the National Natural Science Foundation of

China (No. 60873071, 61172090), Science Research Plan of Shaanxi

Education Ministry of China (12JK0742), Research Plan of Shaanxi

Technical quality Ministry of China (2010-17, 2010-20).

is as general as possible to avoid focusing on steganography

scenarios only, so as to encompass as many natural language

information hiding applications as possible.

Natural language information hiding is depending on

synonymy, movement of phrasal constituents, syntactic or

semantic transformation techniques. We call it cover unit

which is a segment of a text that can be transformed with

meaning preserving. In contrast to rich media files such as

audio and images, it has been proven difficult to embed

hidden secret bits in plain text files because the natural

language processing (NLP) techniques are not yet accurate

and robust [3]–[9]. Generally speaking, the natural language

information hiding mainly suffered the following problems: 1)

lack of embedding room. Size of text, such as news, is very

small, for example, only hundreds bytes or hundreds words,

while size of image is usually several hundred KB or tens of

thousands pixels; 2) Cover units distribute nonuniformly in

text, which degrades security and robustness. 3) The security

and robustness of information hiding mainly depends on

data-hiding codes [10]–[13]. However, it brings very different

background knowledge together: natural language processing

(NLP) techniques and electrical engineering. Most natural

language data hiding researchers come from NLP areas and

they are unfamiliar with the data-hiding codes, while

researchers coming from electrical engineering are proficient

at signal processing and coding techniques but it is difficult

for them to understand the specificity of the natural language

processing techniques.

In this paper, we review existing natural language

information hiding schemes, and point out some challenges

that natural language information hiding should overcome.

We propose general embedding and extracting algorithms

which combine multiple NLP tools to overcome these

challenges. For validating our algorithms, we implement the

Hybrid Natural Language Information Hiding (HYNLIH)

System which separate NLP techniques from coding very well.

Expiraments results show HYNLIH achieved higher

performance in capacity, robustness, and security.

II. THE STATE–OF-ART AND CHALLENGES

While natural language information hiding and multimedia

A Hybrid Natural Language Information Hiding

System

Lu He
1,2

, Xiaolin Gui
1
, Reifeng Wu

2
, Biqing Xie

2
, Chang Hu

3

1
School of Electrical and Information Engineering,

Xi’an Jiaotong University, Xi’an, 710127, China
2
School of Information Science and Technology,

Northwest University, Xi’an 710127, China,
3
 Xi’an Institute of Measurement Technology,

Xi’an 710068, China, phone: 86-29-88308273

xlgui@xjtu.edu.cn

http://dx.doi.org/10.5755/j01.eee.18.9.2817

95

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 18, NO. 9, 2012

information hiding share common goals, they employ very

different technologies. So far natural language information

hiding is depending on synonymy, movement of phrasal

constituents, and semantic transformation techniques.

A. The synonym substitution method

Winstein [3] firstly brought forward a lexical

steganography system, T-Lex, which is based on synonym

substitution. T-Lex has a synonym dictionary in which the

synonyms are extracted from WordNet [4]. In order to ensure

that only words with close senses are replaced with each other,

only such words completely in the same synsets are grouped

in the same synonym set. Such synonym set is called absolute

synonym by Bolshakov [5]. Synonyms in the same synonym

set are numbered from 0. Thus, every synonym in a cover text

is a digit that may belong to different radix. Assuming there

are N absolute synonym words in a cover text, so the N

numbers can be extracted from the cover text and viewed as

an N-digit mixed-radix number. The secret message can be

treated as a number. So, the embedding processing makes the

mixed-radix number presented by a cover text equal to the

secret number by synonym substitutions and the extracting

process reads the mixed-radix number presented by the

stego-text.

In order to increase capacity, Bolshakov gave the definition

of relative synonym that words in the same synonym set are

synonyms in some contexts, but are not synonyms in other

contexts [5]. Avoiding the improper synonym substitution,

words can be substituted with relative synonyms only if the

latter form valid collocations with the context according to the

statistics gathered from Internet [5].

The shortcoming of such synonym substitution methods is

that they do not agree with the genre and the author style of the

given text. Taskiran et al. [6] used a universal steganalysis

method based on language models and support vector

machines to differentiate sentences modified by a lexical

steganography algorithm from unmodified sentences.

However, Taskiran’s method needs a lot of innocuous texts of

the same author for getting an author’s style is not feasible.

Even getting the author’s style, the trigram models are not

accurate enough so that the false alarm is too high. Luo et al.

[7] found that the synonym substitution led to the

phenomenon that the probability of synonym pair

presentation in the cover text increases. In the light of this

observation, the author proposes a steganalysis algorithm

utilizing the number of synonym pair presentation to decide

whether the hidden message exists in text or not.

Experimental results show that the accuracy achieves 86.2%.

B. The syntactic transformation method

Early syntactic transformations depended on deep structure

analysis technologies. Atallah et al. [8] described a

proof-of-concept watermarking implementation based on

sentence transform by which the meaning can be preserved.

The selected sentences carrying the secret bits information

depends only on the tree structure and proceeds as follows:

The nodes of the tree Ti for sentence si of text are labeled in

pre-order traversal of Ti. Then, a node label j is converted to 1

if j + H(p) is a quadratic residue modulo p, and to 0 otherwise,

where p is a secret key and H(·) is a one-way hash function. A

node label sequence, Bi, is then generated by traversing Ti

according to post-order. A rank, di, is then derived for each

sentence for si using di = H(Bi) XOR H(p) and the sentences

are sorted by rank. Starting from the least-ranked sentence sj,

the watermark is inserted to sj’s successor in the text. The bits

are stored by applying syntactic transformations, such as

Adjunct Movement, Passivization.

Some researchers try to avoid doing deep structure parse.

Murphy and Vogel [9] presented three natural language

marking strategies based on fast and reliable shallow parsing

technologies, which relies on part-of-speech (POS) tagging,

and on widely available lexical resources: lexical substitution

(or absolute synonym), adjective conjunction swaps, and

relativiser switching.

Ma et al. [10] pointed out the number of sentences that can

be transformed are few and can be identified easily. They

proposed an attack scheme: firstly, choose some of sentences

that can be transformed. Then, these sentences are

automatically transformed by the same method as the

embedder used. Experiment shows few of transformation can

destroy the watermarks efficiently.

C. The semantic transformation method

The method used in [11] for generating

meaning-preserving semantic transformations is mainly

depending on the usage of noun phrase coreferences. Two

noun phrases are coreferent if they refer to the same entity.

Based on the coreference concept, different transformations

may be introduced. One is co-referential pruning, where

repeated information about the coreferences is deleted. The

opposite side of this operation, coreferent grafting, may also

be performed while information about a coreference is

repeated in another sentence, or added to the text using a fact

database. The method embed secret message in the tree

structure is same as [8]. Difference between the two

algorithms is that the first one modifies syntactic parse tree of

the cover text sentences while the second one modifies the

semantic tree.

However, the current NLP techniques could not offered

adequate tools yet for semantic parsing, which would lead to

semantic watermarking [12]. This method class is

proof-of-concept by assuming a perfect parser or verified by

hand on corpus that are parsed with syntactic or semantic

trees.

D. The challenges

 In contrast to rich media files such as audio and images, it

has been proven difficult to embed hidden secret bits in plain

text files [9]. Generally speaking, the natural language

information hiding mainly suffered the following problems:

Lack of embedding room. For example, according to our

statistics, the capacity of T-Lex is about 2.02 absolutely

synonyms per 100 words. Although the capacity increased

prominently by using relative synonym, the accurate word

sense disambiguate tools are still struggle to achieve much

more than 60% accuracy on general text. Thus, much relative

synonyms have to be given up [9]. To syntactic

transformation techniques, there are about 6-8 transformable

sentences per 100 sentences in English [10]. The best capacity

is Meral’s method for Turkish, averagely 0.81 bit can be

96

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 18, NO. 9, 2012

embedded within a sentence [12], but his method is only

suitable for agglutinative languages. Consequently, a quite

long text is need for hiding a short message, not to mention

considering security or robust encoding that would increase

the length of the to-be hidden bits further.

The non-uniform of cover units in texts. For example,

although capacity of Meral’s method is achieved on the

average 0.81 bit per sentence by 20 natural language

processing tools, there is about 25% sentences in text cannot

be performed by any transformation [12]. Ma makes use of

the nonuniform distribution phenomenon to narrow the attack

targets [10], and our experiments shows that with more

uniform distribution, security and robustness will be

improved.

The security and robustness of information hiding are

largely depending on data-hiding codes [13]. However, most

researchers are putting their focus on how to perform

meaning-preserve transformations. The reason why they

neglect the data-hiding codes is their unfamiliarity with signal

processing and coding theory. Whereas researchers who are

proficient at signal processing and coding techniques are hard

to understand the specificity of natural language. It is urgent

to comb advantage knowledge of researchers with very

different backgrounds in order to avoid the unfamiliar area.

The first problem is hard to be solved unless NLP

techniques get breakthrough. As for the second problem, it is

impossible to settle if only one NLP technique is adopted. As

for the third problem, separated hide-data coding algorithm

from embedding and extracting processes are demanded.

III. GENERAL EMBEDDING AND EXTRACTING ALGORITHMS

We noticed that, no matter synonyms, syntactical structure

of sentence or other ways holding the secret bits are all

minimal segments of text that can be processed by a given

NLP tool for meaning-preserve transformation. Hence, we

introduce the following definitions:

Definition 1: Given a NLP tool, a cover unit is a minimal

segment in a cover text that can be processed by the NLP tool

for meaning-preserve transformation.

Definition 2: An equivalent transformation is a word or

words that convey the same, or almost the same meaning of a

cover unit.

Definition 3: A substitution set is composed by a cover unit

and all of its equivalent transformations. That is to say,

element in a substitution set can exchange each other in a

given context.

Despite different NLP tools are used for embedding or

extracting, by introducing the concept of cover unit the

hidden message can be seen as substituting a word or words

with other word or words conveying the same, or almost the

same meaning, which indicate that the data-hiding code

algorithm is independent from the NLP tools. Furthermore,

whatever the NLP tools are used, the cover units are

homogeneous. Thus, any NLP technique can be combined

together to increase the capacity and improve the uniformity

of cover unit distribution.

According to this method, we re-planned the embedding

and extracting processing, and propose general embedding

and extracting algorithms as following:

Let P = y-sentences text {p1, p2, …, py}. C = {c1, c2, …, ci}

is a data-hiding code plug-in set, ci is the i-th data-hiding code

plug-in. M = {m1, m2, …, mj} is a cover manipulation plug-in

set, mj is the j-th cover manipulation plug-in.

The Embedding Algorithm:

1) Load ck(1≤k≤i) and m M ;

2) Foreach pl(1≤l≤y)

a) Foreach m(m∈M)

i. Parse pl by m to get cover units and generate

equivalent transformations for every

cover unit.

ii. For each cover unit, the bits strings were

assigned to each equivalent

transformation by ck.

3) Sort and block the cover units by ck, the order before

sorting will be saved in seq and the order after

sorting will be saved in sn;

4) Encode the secret bits into data-hiding code according

to the blocking result by ck;

5) Sort the data-hiding code bits by ck according to the

mapping between seq and sn;

6) foreach pl(1≤l≤y)

a) foreach m(m∈M)

i. Choose right equivalent transformations to

substitute cover unit to generate stego-text

by m according to the sorting data-hiding

code bit;

7) Return the stego-text;

The Extracting Algorithm:

1) Load ck(1≤k≤i) and m M ;

2) Foreach pl(1≤l≤y)

a) foreach m(m∈M)

i. Parse pl by m to get cover units and generate

equivalent transformations for each cover

unit.

ii. For each cover unit, the bit strings were

assigned to each equivalent

transformation by ck.

3) Sort and block the cover units by ck, the order before

sorting will be saved in seq and the order after

sorting will be saved in sn;

4) Read the confusing data-hiding code bits from the

cover units by ck.

5) Decode the data-hiding code bits to recover the secret

bits by ck.

The embedding algorithm can be divided into three stages.

In the first stage, there are three things should be done. Firstly,

if multiple cover manipulation plug-ins were applied, they

must be followed into a certain order, such as alphabetical

order, for correct embedding and extracting.

Secondly, every cover manipulation plug-in utilizes a NLP

tool to parse the cover text. This would help to find the cover

units out and generate equivalent transformations. Then we

could compose substitution sets for every cover unit. For

example, an English absolute synonym plug-in would

compare each word of a cover text to the synonym dictionary

of T-Lex. As an entry of the synonym dictionary, a word can

be deemed as a cover unit and its synonyms are equivalent

transformations. Another example is English syntactic plug-in.

97

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 18, NO. 9, 2012

The plug-in could utilize a syntactic parser, in our experiment

the Stanford Parser [14] is used, to get syntactical structure of

each sentence in a cover text. If the syntactical structure of

one sentence can be applied to syntactic transformations, the

sentence is a cover unit. Some of the common syntactic

transformations in English were listed in [8].

Thirdly, since the hidden message is embedded by

substituting a word or words with equivalent transformation,

every equivalent transformation of the same substitution set

should be assigned into a bit or several bits. Suppose ui is a

cover unit and si is the substitution set of ui. The data-hiding

code plug-in assigns a bit or several bits to each equivalent

transformation of si under control of the secret key. For

example, if si has only two equivalent transformations, the ui

could be used for embedding only one bit at most; if si has

forth-equivalent transformations, the ui could be used for

embedding one bit, i.e. two transformations are assigned 0

and the other two equivalent transformations are assigned 1.

Otherwise, the transformations would be embedded into two

bits, for each of the equivalent transformation is assigned to

different bits string.

At the second stage, data-hiding code plug-in translates

secret bits into data-hiding code. The following things should

be done:

Some data-hiding code algorithms need to examine the

cover features during the embedding processing, such as

informed embedding schemes [15]. Since every cover unit

can be viewed as a feature, all cover units of the cover text

would compose a feature set of the cover text. Informed

embedding scheme examine these cover units before

encoding. That is why the embedding algorithm should be

find out all cover unit first.

Secondly, if we embed the secret bits in cover units orderly,

the adversary could read them out easily. Thus for keeping

secret, a data-hiding code plug-in should sort cover units out

under the control of the secret key. Similar to cryptography,

many data-hiding codes are block codes, which group the

cover units into blocks. For example, F5 code [16] would

group a sequence of secret bits with length n into a block, then

encodes the block of secret bits into an F5 code with length

2
n
-1 bits. If a cover unit holds one bit, the 2

n
-1 cover units are

composed one block for holding the n secret bits. [8] embeds

β bits into one sentence that can be performed

meaning-preserved transformation, and a block shall be

composed one sentence.

Furthermore, the cover manipulation plug-in should

substitute the cover units with one of its equivalent

transformation according to the encoding result. However,

since the cover units were sorted by the data-hiding code

plug-in, in order to embed a bit, the cover manipulation

plug-in must search the cover unit from beginning of the cover

text. Performance of such strategy is not good. In order to

avoid multi-scan the cover text, the encoding result should be

sorted as the same order of cover units. For example, suppose

the cover units list is {a, b, c, d, e, f} before sorting the units

cover and {c, e, d, a, f, b} after sorting. Suppose two cover

units composed one block, and the blocking result is {(c, e), (d,

a), (f, b)}. The mapping between cover units and encoding

bits is shown in Table I.

TABLE I. EXAMPLE OF SORTING COVER UNITS AND ENCODING BITS.

Cover unit list

before sorting

Cover unit

list after

sorting

The encoding

result

The sorting

bits

a c 1 1

b e 0 1

c d 1 1

d a 1 1

e f 0 0

f b 1 0

The last stage in embedding algorithm is generating a

stego-text. The cover manipulation plug-in would read the

cover unit list according to the order before sorting, and scan

the cover text to find the current cover unit out. Following, the

cover manipulation plug-in will choose equivalent

transformation according to the sorting encoding result and

substitute the cover unit for embedding. Thus, for generating a

stego-text, we only need a one-pass scan cover text.

In the extract processing, the cover manipulation plug-ins

used in the embedding process would parse the stego-text for

finding the cover units out and generating equivalent

transformations, just like the embedding processing does.

Then the data-hiding code plug-in would assign bits string to

each equivalent transformation, and read the encoding bits to

sort and block just like what happened during the embedding

processing. Lastly, the data-hiding code plug-in would decode

for recovering the secret messages.

IV. EXPERIMENTS

In order to validating our algorithms, we developed the

HYNLIH system according to the general embedding and

extracting algorithms, which is implement in three-tier

architecture. The topmost tier would be the presentation tier

which provides the human-computer interface. The general

embedding algorithm and extracting algorithm implement by

the middle tier. The lowermost is the cover manipulation

plug-ins and data-hiding code plug-ins which are loaded by

middle tier.

We designed five schemes for contrasting capacity,

security and robustness of the NYNLIH. Scheme No.1 used

the absolutely synonym substitution cover manipulation

plug-in as [3]. Scheme No. 2 used the relative synonym

substitution cover manipulation plug-in as [5]. Scheme No. 3

used the syntactic transformation cover manipulation plug-in

as [8]. Scheme No. 4 used substituting the swapping of

complementisers and relativisers cover manipulation plug-in

as [9]. Schemes No. 1-4 are classical natural language

information hiding schemes. Scheme No.5 combined all

cover manipulation plug-ins that are used in scheme No.1-4.

Scheme No.1-5 are used the same data-hiding code plug-in,

that is random codes plug-in. The random code plug-in sorts

cover units randomly so that the adversary cannot indicate

where the secret bits are embedded. The performance of

random code plug-in is similar to quadratic residues coding

(which is a classical encoding scheme suitable for syntactic

and semantic natural language information hiding) but

independent of syntactic or semantic tree and hence suitable

to various cover manipulation plug-in. Then, we collected a

98

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 18, NO. 9, 2012

large of raw text materials from the Internet, which involve

English Classic, news, economy, health, sports, and

technology etc. We chose 1000 texts as innocent text for

learning the innocent pattern by steganalysis algorithm and

the other 1000 texts as cover text for embedding secret

message. Lastly, we embedded secret message in cover texts

according by the five schemes respectively and got 5000

stego-text. We do not estimate the imperceptibility because

scheme No.1-4 are simulated the existing algorithms.

A. The Capacity and Cover Unit Density

In order to measure the capacity in each scheme, we

introduced the definition of cover unit density as following

U = C/N, (1)

where N is the number of words in a cover text, C is the

number of cover units that cover manipulation plug-ins may

find in this cover text. We plotted the cover unit density of

every cover text against the five schemes in Fig. 1 (a) – (e).

The graphs clearly show that the highest density of cover unit

is in scheme No.5, which means the distribution of cover unit

in scheme No.5 is the most uniform one while scheme No.3 is

the most dispersive scheme, which means the distribution of

cover unit in scheme No.3 is the most non-uniform one. The

densities of cover unit of top 100 cover texts are plotted in Fig.

2 for showing details. The horizontal dashed lines in Fig. 2

stand for average capacity of 1000 cover texts. Obviously, the

capacity of scheme No.5 is equal to the sum of the capacity of

scheme No.1–4.

Fig. 1. Cover unit densities of the 1000 cover texts. The x- axis is the text id

and the y-axis is the cover unit density.

Fig. 2. The details of cover unit densities of top 100 cover text. The

horizontal dashed lines are the average capacity.

B. The Security

We performed the steganalysis algorithm proposed in [7]

on scheme No.1, No. 2 and no.5. The results are shown in Fig.

3. As the results shown, obviously, the difference between the

features of innocent text and the features of hybrid embedded

stego-text is smaller than the difference between the features

of clean text and the features of single embedded stego-text.

The superior performance of scheme No. 5 is because the

steganalysis is based on detecting differences of the cover

texts before and after embedding. Each steganography

method embeds in texts in the same way and produces a

particular type of distortion on stego-text. Therefore,

discovering the distortion type of a steganography method,

namely the difference of some statistical characteristics

between the innocent texts and the stego-texts is the key issue

in steganalysis. The accuracy of steganalysis is proportionate

to the embedding rate, since the more secret bits embedded

into a cover text the more difference between the innocent

texts and the stego-texts. The HYNLIH employs multiple

cover manipulation plug-ins, it reduces the embedding rate on

one cover manipulation tool, that is to say, many synonyms

are not used when embedding. Thus, the number of synonym

pair is reduced that the different is nondistinct between the

curve CD/ND (CD/ND is the proportion of the number of

synonym pair in stego-texts and in innocent texts) of innocent

texts and stego-texts.

Fig. 3. The distribution curve of CD/ND. The x-axis is the number of

synonym pair rate (denote by CD/ND). The y-axis is the cumulative

distribution function of CD/ND.

C. The Robustness

We performed Ma’s attack [10] against scheme No.3-5.

The result is shown in Fig. 4.

Fig. 4. The bit error rate (BER) of syntactic transformation attack. The

x-axis is the percentage of words that affected by sentence transformation.

The y-axis is the bit error rate.

The reasons of superior performance of scheme No.5 are

similar to the analysis in section 4.2, that is to say, since only a

part of secret bits are embedded into syntactic structure, the

99

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 18, NO. 9, 2012

sentences attacked may not carry bits. Thus, the error bit rate

is reduced.

V. CONCLUSIONS

In this paper, we proposed the concept of cover unit for

combining multiple natural language process tools and

overcame some challenges in natural language information

hiding. We divided the natural language information-hiding

algorithm into two groups: cover manipulation plug-in and

data-hiding code plug-in. And the general embedding

algorithm and extracting algorithm were proposed which may

combine the cover manipulation plug-ins together for

data-hiding coding. Then we implemented a Hybrid Natural

Language Information Hiding system, the HYNLIH.

Experiments show the HYNLIH achieved a higher capacity,

higher security, higher robustness, and the cover units

distribute more uniformly. In the future, we will try to

integrate more cover manipulation plug-ins and data-hiding

code plug-ins to validate our general embedding and

extracting algorithm, and measure the capacity.

REFERENCES

[1] S. Katzenbeisser, F. A. P. Petitcolas, Information Hiding Techniques

for Steganography and Digital Watermarking, Artech House Inc.,

2000, pp. 21.
[1] M. Topkara, C. M. Taskiran, “Natural language watermarking”, in

Proc. of the SPIE, vol. 5681, SPIE press, 2005, pp. 441–452. [Online].
Available: http://dx.doi.org/10.1117/12.593790

[2] K. Winstein, T-Lex. [Online]. Available:

http://alumni.imsa.edu/~keithw/tlex

[3] WordNet: An Electronic Lexical Database, MIT Press, 1998, pp.32.

[4] I. A. Bolshakov, “A method of linguistic steganography based on

collocationally-verified synonymy”, in Proc. of the 7th Information

Hiding, Springer, 2005, pp. 607–614.

[5] C. Taskiran, U. Topkara, M. Topkara, et al., “Attacks on Lexical

Natural Language Steganography Systems”, in Proc. MM&Sec '06,

vol. 6072, SPIE press, 2006, pp. 97–105,.

[6] G. Luo, X. M. Sun, L. Y. Xiang, et al., “Steganalysis on Synonym

Substitution Steganography”, Journal of Computer Research and

Development, vol. 10, no. 45, pp. 1696–703, 2008.
[2] M. J. Atallah, V. Raskin, M. Crogan, et al., “Natural Language

Watermarking: Design, Analysis, and a Proof- of- Concept
Implementation”, in Proc. of the 4th Information Hiding, Springer,
2001, pp. 185–200. [Online]. Available:
http://dx.doi.org/10.1007/3-540-45496-9_14

[7] B. Murphy, C. Vogel, “Statistically Constrained Shallow Text

Marking: Techniques, Evaluation Paradigm, and Results”, in Proc. of

the SPIE, SPIE press, vol. 6072, 2006, pp. 1–12.

[8] G. P. Ma, Y. X. Zhang, L. He, et al., “Active Attacks on Syntactic

Natural Language Steganography”, in Proc. of the 9-th China

Information Hiding, Sichuang University press, 2010, pp. 54–58.

[9] M. J. Atallah, V. Raskin, C. F. Hempelmann, et al., “Natural Language

Watermarking and Tamperproofing”, in Proc. of the 5th Information

Hiding, Springer, 2002, pp. 196–212.
[3] H. M. Meral, B. Sankur, A. S. Ozsoy, et al., “Natural language

watermarking via morphosyntactic alterations”, Computer Speech and
Language, Elsevier Science, vol. 1, no. 23, pp. 107–125, 2009.
[Online]. Available: http://dx.doi.org/10.1016/j.csl.2008.04.001

[10] P. Moulin, R. Koetter, “Data-Hiding Codes”, IEEE press, vol. 12, no.

93, 2005, pp. 2083–2126.

[11] The Stanford Parser. [Online]. Available:

http://nlp.stanford.edu/software/lex-parser.shtml

[12] M. Barni, F. Bartolini, Watermarking Systems Engineering: Enabling

Digital Assets Security and Other Application. Marcel Dekker Inc.,

New York, USA, 2004, pp. 45–47.
[4] A. Westfeld, “F5 a steganographic algorithm: high capacity despite

better steganalysis”, in Proc. of the 4th Information Hiding, Springer,
2001, pp. 289–302. [Online]. Available:
http://dx.doi.org/10.1007/3-540-45496-9_21

100

http://alumni.imsa.edu/~keithw/tlex
http://nlp.stanford.edu/software/lex-parser.shtml

