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Abstract—The paper presents some preliminary results on 

distribution of pheromone evaporation values among ants in 

Ant System. Two cases are studied, one with uniform 

distribution of pheromone evaporation values among cities and 

other with Gaussian distribution. Experimental analysis is 

performed by comparing behavior of Ant System solving 

Traveling Salesman Problem. Minimum mean error found and 

number of near optimal solutions found are used as main 

indicators of Ant System performance evaluation. Pheromone 

evaporation coefficient values distribution showed very little to 

no impact on convergence speed. Preliminary experimental 

results confirm that by introducing a pheromone evaporation 

asymmetry, Ant System minimum mean error decreases up to 

8 % and the number of near optimal solutions increases up to 

25 % without sacrifice of convergence speed and without much 

change in complexity.  

 
Index Terms—Ant colony optimization, computational 

efficiency, gaussian distribution, optimization, parameter 

estimation.  

I. INTRODUCTION 

One of the most noticeable behaviors of certain ant 

species is the ability to find shortest paths by exploiting 

communication based on pheromone, chemical substance 

that ants can deposit and smell. Biological background is 

used as a mathematical model for a group of optimization 

algorithms known as Ant Colony Optimization (ACO) [1]. 

These algorithms also rely on heuristic information, which is 

usually presented as a set of general rules which can reduce 

the search space. 

ACO group is growing rapidly as each year new 

modifications and algorithms are proposed. However in the 

majority of cases the main generic ACO algorithms are used 

as a base for modification. The most popular generic 

algorithms are: Ant System (AS) [2], Elitist Ant 

System (EAS), Rank based Ant System (ASrank), MAX-

MIN Ant System (MMAS), Ant Colony System (ACS).  

ACO algorithms could be applied in different areas, where 

combinational problems arise. Most straightforward 

application of ACO is for the Traveling Salesman 

Problem (TSP) [3], which is used as a benchmark for 

different optimization algorithms. In the case of TSP 

 
Manuscript received March 12, 2012; accepted May 5, 2012.  

 

 

heuristic information for AS is based on the distance 

between cities of interest. Similar application is AntNet [4], 

an algorithm used for network routing. There exist more 

sophisticated problems, where the application of ACO is not 

very straightforward. Image pre-processing [5] could be a 

good example of problem often requiring an intelligent 

approach [6]. The results of ACO algorithm are very 

parameter dependent, so a lot of hybrid ACO systems were 

proposed with adaptation of various parameters values 

during simulation by the use of other optimization 

techniques [7], like genetic algorithms [8] and taboo 

search [9]. However such an approach increases the 

complexity of the algorithm and is not suitable for a rapidly 

growing field of embedded systems, because they are limited 

on computational resources. As an alternative the 

distribution of initial parameters values was tested and 

proved reasonable choice when exact values are not known. 

The goal of this work was to check if the introduction of 

the asymmetry by the distribution of evaporation coefficient 

and without change to the general algorithm structure could 

decrease the minimum mean error and improve the number 

of near optimal solutions found. 

For experimental testing, AS was chosen as one of the 

simplest ACO algorithms, providing moderate convergence 

speed with quite high minimum mean error compared to 

other ACO algorithms.  

II. ANT SYSTEM 

When speaking about AS it is assumed that the ant-cycle 

based version is in question. Tour construction and 

pheromone update are the two main steps in the ant-cycle 

based version of AS. Initial pheromone trails are set 

according to recommendations [1] 

nn
0 / , ( , ),ij m C i j     (1) 

where ij  is pheromone value on an arc from city i  to city 

j
; 0  is the initial pheromone value; m  is a number of 

ants; 
nnC  is the length of a tour generated by the nearest-

neighbor algorithm. 

For AS the number of ants m  is usually taken to be equal 
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to the number of cities n , and during the initialization step 

each city contains exactly one ant. During tour construction 

step, ants are moved from city to city until tours are fully 

constructed. Movement decision depends on heuristic 

information 1/ij ijd   and the pheromone information ij . 

Here ijd  is the distance between cities i  and j . Ant 

movement probability rule is 
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where   determines influence of pheromone trail; 

  determines influence of heuristic information; k
iN  is the 

feasible neighborhood made of non-visited cities of ant k  

while at city i . 

During pheromone update step, pheromone is evaporated 

and then deposited. Pheromone evaporation coefficient 

0 1   determines how quick ants can forget found paths 

and avoid unlimited pheromone accumulation. Evaporation 

is performed by 

 1 , ( , ).ij ij i j      (3) 

After evaporation the deposition of pheromone is 

performed by 
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where 
k
ij  is the amount of pheromone deposited by ant k : 

1/ , if arc ( , )  ,

0, otherwise,
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where 
kC  is the length of the tour 

kT , calculated as a sum 

of all arc’s lengths belonging to the tour constructed by 

ant k . 

III. DISTRIBUTION OF EVAPORATION COEFFICIENT VALUES 

In this case all TSP are symmetrical, so the cost of 

moving in both directions is the same. The pheromone trail 

is also symmetrical, so it’s level on arc( ,  )i j  and arc( ,  )j i  is 

the same. The main idea of distributed values of pheromone 

evaporation coefficient is to assign different values of 

evaporation to different cities, affecting the symmetry of 

pheromone trail on arcs. This introduced asymmetry in 

pheromone trail is expected to improve the minimum mean 

error and the number of near optimal solutions found, by 

forcing ants to explore different routes. Evaporation 

coefficient placed in one city should affect all the arcs 

linking this city to other cities, this way the pheromone trail 

on arc( ,  )i j  is not necessary the same as on arc( ,  )j i . 

First distribution to try was the uniform distribution. 

Uniform distribution of evaporation coefficient values could 

be expressed by 

 min 1 ,i i       (6) 

where i  is the pheromone evaporation coefficient 

belonging to city i ; and max min( ) / n     . 

Another distribution to try was of Gaussian type. In this 

case the approximate expression is a little bit more complex 

 max min minln / 9.2 0.5 ,
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where    1 / 1 0.98 0.5id i n     . 

According to recommendations [1], only one pheromone 

evaporation coefficient value is provided for TSP problem. 

This makes the task of selection max
 and min

 parameters 

for AS an experimental choice. 

IV. EXPERIMENTAL SETUP 

TSPLIB [10] database contains different TSP together 

with known optimal solutions. It is known that AS is not 

suitable for large TSP [1]. So two average symmetrical TSP 

were chosen: berlin52, att48; and also one small TSP –

 burma14. 

During the first experiment two parameters’ sets for each 

problem were chosen: the first one – for the highest number 

of near optimal solutions found and the second one – for the 

lowest minimum mean error. In this experimental setup it is 

assumed that near optimal solutions are those that differ 

from the optimal tour length by no more than 1 %.  

The second experiment was to determine if the 

pheromone evaporation distribution could improve the 

number of near optimal solutions found, by trying various 

distributions and comparing results. 

Third experiment was intended to check if the distribution 

of the pheromone evaporation coefficient could improve the 

minimum mean error. 

After each experiment, solutions were compared to those 

obtained with the nearest neighbor algorithm and the 

iteration at which the nearest neighbor algorithm’s solution 

was exceeded by the AS solution was noted for convergence 

speed comparison. 

During experiment e , the iteration t  error was calculated 

according to 

opt

fnd
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 (8) 

where 
optC  is the known shortest tour from TSPLIB 

database; 
fnd( ),  min k
t tk C C   is the iteration best distance 

found by AS during iteration t . As for each parameter’s set 
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100 experiments were performed, the mean error of iteration 

could be expressed by 

100

1

1

100

e
t t
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E E


  . (9) 

For each problem 300 iterations were performed. And for 

each iteration the mean error and minimum mean 

error  min( ),  min tt E E   were calculated. 

For initial experiment these parameters values were 

chosen according to recommendations [1]: 1  ;   could 

be from 2 to 5; 0.5  ; m n ; nn
0 /m C  . For all 

parameters fixed values were provided, except for the  . So 

the values from the provided range were tested. For each 

problem two values of   were selected: one with the largest 

number of near optimal solutions found and other with the 

minimum mean error. 

For other experiments,   was distributed using uniform 

and Gaussian distributions around recommended center 

value 0.5  . Three sets for each distribution were created 

and tested during experiment: 

min max[ 0.4 : 0.6],     (10) 

min max[ 0.3: 0.7],     (11) 

min max[ 0.2 : 0.8].     (12) 

V. RESULTS 

Each problem requires a different parameters set to 

achieve a minimum mean error or a maximum number of 

near optimal solutions. The only exception in this case is 

Berlin52 problem, where the minimum mean error (0.0666) 

and the maximum number of near optimal solutions (33) 

found are achieved with the same value of sensitivity to 

heuristic information: 3.5  . For Att48 problem the 

largest number of near optimal solutions found (4) was 

when 3.5   and the minimum mean error (0.0713) was 

reached when 5.0  . For Burma14 problem these values 

are: 2.0   for the near optimal solutions found (50); 

4.0   for the minimum mean error (0.0267). It is natural 

that by increasing the sensitivity to heuristic information 

convergence speed is also increasing as the algorithm 

behavior is getting closer to the nearest neighborhood 

algorithm. 

For the next experiment, parameters’ sets with the highest 

number of near optimal solutions found were taken to 

evaluate pheromone evaporation coefficient distribution. 

Results presented in the Table I prove the assumption that 

introduced asymmetry may increase the number of near 

optimal solutions found. In this case the increase of near 

optimal solutions found was 25 % for Att48 and 14 % for 

Burma14 problems; however decrease for about 3 % was 

noted for Berlin52 problem. Also the pheromone 

evaporation coefficient distribution has almost no impact on 

AS convergence speed. 

For the last experiment, parameters’ sets with the 

minimum mean error were taken for evaluation. From the 

Table II it is clear, that distribution of evaporation 

coefficient leads to improvement of the minimum mean error 

for all the problems: about 3 % for Berlin52 and Att48, and 

about 8 % for Burma14. Convergence speed remained 

constant.

TABLE I. EVAPORATION COEFFICIENT DISTRIBUTION (PARAMETERS WITH THE HIGHEST NUMBER OF NEAR OPTIMAL SOLUTIONS). 

Problem Berlin52 Att48 Burma14 

Pheromone evaporation 

coefficient, 


 

Minimum mean 

error reached 

Near optimal 

solutions found 

Minimum mean 

error reached 

Near optimal 

solutions found 

Minimum mean 

error reached 

Near optimal 

solutions found 

0.5 0.0666 33 0.0742 4 0.0345 50 

Unif[0.4:0.6] 0.0659 29 0.0713 5 0.0325 51 

Unif[0.3:0.7] 0.0684 27 0.0735 0 0.0322 47 

Unif[0.2:0.8] 0.0647 28 0.0737 0 0.0335 57 

Gauss[0.4:0.6] 0.0668 22 0.0738 2 0.0343 49 

Gauss[0.3:0.7] 0.0660 27 0.0737 3 0.0333 51 

Gauss[0.2:0.8] 0.0650 32 0.0743 3 0.0344 49 

TABLE II. EVAPORATION COEFFICIENT DISTRIBUTION (PARAMETERS WITH THE LOWEST MINIMUM MEAN ERROR). 

Problem Berlin52 Att48 Burma14 

Pheromone evaporation 

coefficient, 


 

Minimum mean 

error reached 

Near optimal 

solutions found 

Minimum mean 

error reached 

Near optimal 

solutions found 

Minimum mean 

error reached 

Near optimal 

solutions found 

0.5 0.0666 33 0.0713 2 0.0267 7 

Unif[0.4:0.6] 0.0659 29 0.0727 4 0.0262 9 

Unif[0.3:0.7] 0.0684 27 0.0695 2 0.0255 12 

Unif[0.2:0.8] 0.0647 28 0.0722 2 0.0258 10 

Gauss[0.4:0.6] 0.0668 22 0.0713 4 0.0268 12 

Gauss[0.3:0.7] 0.0660 27 0.0706 3 0.0254 11 

Gauss[0.2:0.8] 0.0650 32 0.0720 5 0.0247 13 

 

V. CONCLUSIONS 

After experimental testing these conclusions could be 

made: 

 Pheromone evaporation value distribution provided 

from -3 % to 25 % improvement in the number of 

near optimal solutions found. 

 In the case of the minimum mean error with distributed 

pheromone evaporation coefficient values, from 3 % 

to 8 % improvement was noted. 
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 Distribution of the pheromone evaporation coefficient 

values has no or very little effect on AS algorithm 

convergence speed. 

 The proposed modification is reasonable to use on 

small to average TSP without much increase of AS 

algorithm complexity. 
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