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Abstract—This paper proposes a new method for calculating 

acoustic confusability between words for automatic speech 

recognition. Acoustic confusability is one of the key elements 

influencing speech recognition accuracy. The proposed method 

is based on Levenshtein distance, calculated on phonetic 

transcriptions from the speech recognizer’s vocabulary. The 

method was evaluated in an indirect way. The experiments 

were carried out on four different sets of context-dependent 

acoustic models. The proposed method successfully predicted 

the acoustic confusability between words from the speech 

recognizer’s vocabulary.  

 
Index Terms—Acoustic modeling, automatic speech 

recognition, human computer interaction, Levenshtein distance.  

I. INTRODUCTION 

An automatic speech recognition system is one of the 

prerequisite modules in case when developing a system for 

supporting natural human-computer interaction [1]. 

Examples of such human-computer interaction are 

Interactive Voice Response (IVR) systems, virtual avatars, 

intelligent ambient systems, etc. 

A speech recognizer’s vocabulary must be created during 

the process of developing a spoken dialog for HCI. The 

acoustic similarity between words within the vocabulary 

results in acoustic confusability, which decreases the speech 

recognition accuracy. In order to control and reduce this 

effect, this paper proposes a method for predicting the 

acoustic confusability of words for speech recognition. This 

method is based on Levenshtein distance [2], [3] calculated 

from phonetic transcriptions of words taken from speech 

recognizers’ vocabulary.  The proposed method is especially 

useful when new words are added to the vocabulary during a 

system’s development phase, as they can be modified in 

those cases of worse acoustic confusability. In such a way, 

the quality of service (e.g. IVR), remains at the same level. 

Another usage possibility is to apply the proposed method 

for the prediction, which set of acoustic models (i.e. 

different type or complexity) [4], [5] would produce the best 
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speech recognition results for a given test set/vocabulary [6]. 

The defined method could be also applied as similarity 

metric for cross-lingual speech recognition [7]. 

The proposed method for predicting the acoustic 

confusability of words is language independent. These 

experiments were carried out with the Slovenian language, 

but this method could be applied to any other language with 

non-trivial grapheme to phoneme conversion, resulting in a 

phoneme set with various members. All experiments were 

carried out on isolated words, as the usage of a test scenario 

with a statistical language model could influence the 

evaluation of the proposed method.  

II. ACOUSTIC CONFUSABILITY AND LEVENSHTEIN DISTANCE 

Acoustic confusability between words is one of the key 

elements influencing the performance of a speech 

recognition system [3]. One of the possibilities for 

estimating the acoustic confusability of a new word is to 

calculate the acoustic similarity of words based on acoustic 

models. The drawback of such a method is that it can be 

complex and, in addition, needs full access to the parameters 

of the acoustic models. This is not usually the case for 

commercial speech recognition systems. The solution is to 

use a metric based on a speech recognizer’s vocabulary, 

which is usually accessible. 

The proposed predictive method originates from 

Levenshtein distance (LD) [3], calculated on phonetic 

transcriptions of words within the speech recognizer’s 

vocabulary. The Levenshtein distance gives the number of 

operations needed to transform one phonetic transcription 

into another one. The available transformation operations 

are the insertion, deletion or substitution of a phoneme 

within the transcription. For example, the Levenshtein 

distance between the phonetic transcription of the English 

words “house” (/h o u s e/) and “houses” (/h o u s e s/) is 1, 

since you need only one insertion (last /s/) to transform the 

phonetic transcription of “house” to the transcription of 

“houses”. Such a Levenshtein distance is dependent on the 

length of the phonetic transcription, thus the normalization 

of distance is used for the length of the phonetic 

transcription. The normalized Levenshtein distance (NLD) is 

defined as 
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where ),( ji wwLD  denotes the Levenshtein distance 

between words i and j and maxl  denotes the number of 

phonemes from the longer word. The resulting NLD takes 

values between 0 and 1. Previously detailed analysis of 

speech recognition errors have shown that the largest part of 

misrecognitions occurred between two or three words in the 

set, usually those that are acoustically similar. This was the 

starting-point for the proposed method. Thus the proposed 

acoustic confusability (AC) of word i is defined as 

,)min( NLDNLDAC ii      (2) 

where iNLD  denotes the normalized Levenshtein distance, 

and  and   denote the empirically defined weights. They 

were set to values 0.9 and 0.1 for the speech recognition 

systems involved in the experiments. 

When a new word should be added to a test scenario, the 

acoustic confusability is calculated for the phonetic 

transcriptions of all those particular words included within 

the speech recognizer’s vocabulary.  

III. SPEECH DATABASE 

The speech recognition systems involved in the 

experiments were developed using the Slovenian 1000 FDB 

SpeechDat(II) database. The databases from the SpeechDat 

family are applied for constructing various voice-driven 

telecommunication services and cover, at the moment, more 

than 50 different languages. The Slovenian SpeechDat(II) 

database includes recordings of 1000 speakers over fixed 

telephone lines. For each speaker 43 different utterances 

were recorded. The structure of the speakers in the database 

is demographically balanced. The training set consists of 

800 speakers and the test set of 200. Various test scenarios 

with isolated or connected words can be used for evaluating 

the speech recognition system. The most frequently used test 

scenarios are:  

 voice-mail command words,  

 isolated and connected digits,  

 yes/no answers,  

 city names,  

 phonetically balanced words.  

The size of the vocabulary for these test scenarios varies 

between 2 and 1491. 

One of key factors that influence on the acoustic 

confusability of words, and thus the complexity of a speech 

recognition system, is the number of phonemes included in 

the acoustic models. The Slovenian SpeechDat(II) database 

has 46 different phonemes. If less frequent phonemes are 

mapped into similar more frequent ones, using the acoustic-

phonetic knowledge, the number of phonemes can be 

reduced. One set with 39 phonemes and one set with 25 

phonemes were trained in such a way. This modeling 

approach influences the acoustic confusability between 

different words and results in an increased number of 

training examples per particular phoneme.  

In addition to these acoustic models based on phonemes, a 

separate set was trained based on 25 Slovenian graphemes. 

The advantage of grapheme acoustic models is that they 

don’t include any additional errors introduced during 

grapheme to phoneme conversion, which can be very 

difficult for some languages. 

An evaluation of proposed method was carried out on a 

voice-mail command words test scenario containing 31 

different words with 1070 recordings. This test scenario was 

the most suitable one in the speech database, as it contained 

the highest number of recordings per isolated word. Four test 

cases were prepared. Three words (approx. 10%) were 

randomly excluded from the vocabulary for the construction 

of the first test case. This presented the evaluation baseline. 

The excluded 3 words (W1, W2 and W3) where then added 

to the baseline vocabulary one at a time and the acoustic 

confusability was calculated for these cases. The evaluation 

was done in an indirect way, using speech recognition 

results. 

IV. EXPERIMENTAL SETUP 

The speech recognition systems involved in the 

experimental setup were based on monolingual COST 278 

MASPER scripts [8]. In such a way, an identical training 

procedure was used for all the different sets of acoustic 

models.  

The feature extraction was based on 12 mel-cepstral 

coefficients and energy. In addition to the basic 13 features, 

delta and delta-delta features were also included. The final 

feature vector had 39 elements. The window size was 25 ms, 

and the window shift 10 ms. Cepstral mean normalization 

was applied to improve the front-end robustness. 

Three state left-right continuous density Hidden Markov 

Models topology was used for the acoustic modeling. Three 

step approach was applied for training the acoustic models. 

The initial set contained context-independent acoustic 

models with one Gaussian probability density function per 

state. The forced realignment procedure was carried out 

using these models, with the goal of improving the speech 

transcriptions included in the acoustic training. On the 

typical training set, less than 0.1 % of utterances were 

excluded using the forced realignment procedure. 

The improved transcriptions were included in the second 

step, where the acoustic models were trained from scratch 

using the model specific initial values. After the 

initialization, the number of Gaussian mixtures per state was 

increased to 32 in a stepwise manner. The resulting acoustic 

models were again involved in the forced realignment 

procedure. Less than 0.06 % of utterances were excluded 

from the training set this time. 

The context-dependent (triphone) acoustic models were 

developed during the last step of acoustic modeling. The 

phonetic decision-tree based clustering was applied, to 

reduce the number of free acoustic models’ parameters, 

which should be estimated during the training. The phonetic 

decision trees were induced with the broad phonetic classes 

generated from a data-driven approach based on the 

phoneme similarity estimation [9]. The number of Gaussian 

mixtures per state in the triphone acoustic models was 
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incrementally increased to 16. This was the final version of 

the acoustic models used for the evaluation. 

The complete acoustic modeling training procedure was 

carried out for 4 different sets of acoustic models. Context-

dependent acoustic models were trained with 25, 39 and 45 

phonemes, respectively and grapheme based context-

dependent acoustic models with 25 elements. The 

comparable complexity (i.e. number of free acoustic models’ 

parameters) for all the final context-dependent acoustic 

models was controlled with the threshold parameter during 

the decision-tree based clustering procedure.  

V. RESULTS 

The evaluation of the experimental setup for predicting 

acoustic confusability between words during automatic 

speech recognition was carried out in two steps. First, the 

acoustic confusability of words W1, W2, and W3 was 

calculated for the given speech recognizer’s vocabulary for 

all 4 sets of acoustic models. The results are presented in 

Table I. 

TABLE I. ACOUSTIC CONFUSABILITY OF WORDS W1, W2, AND W3 FOR 

DIFFERENT SETS OF ACOUSTIC MODELS. 

Acoustic 

models 

Acoustic confusability 

W1 W2 W3 

GR-25 0.582 0.239 0.489 

PH-25 0.583 0.239 0.487 

PH-39 0.587 0.239 0.612 

PH-45 0.587 0.239 0.612 

 

The results for the calculated acoustic confusability 

predicted that the highest number of misrecognitions would 

occur for word W2. Its acoustic confusability was 0.239 for 

all four different sets of acoustic models. This level of 

acoustic confusability was the result of word W2, which 

differed with the next most similar word by only one 

insertion. The acoustic confusability for word W3 varied 

between 0.487 for PH-25 acoustic models and 0.612 for the 

PH-39 and PH-45 acoustic models, respectively. The word 

W1 had acoustic confusability of 0.582 for GR-25 acoustic 

models and 0.587 for the PH-39 and PH-45 acoustic models. 

This range of values for word W1 predicted the lowest 

number of misrecognitions for this word. The pairwise 

identical values of acoustic confusability for the PH-39 and 

PH-45 acoustic models confirmed, that the additional 6 

phonemes in the PH-45 set are infrequently found in 

vocabularies. Such acoustic models are more difficult to 

train. The predicted acoustic confusability between words 

showed insignificant distinction between the grapheme (GP-

25) and phoneme (PH-25) types of acoustic models with 

comparable models’ complexities. 

In the second step, the previously calculated acoustic 

confusability between the words was indirectly evaluated 

with the speech recognition results for different acoustic 

models on a given test scenario using the baseline and three 

new words in the vocabulary. The speech recognition results 

are given as word error rates (WER), which is defined as 

100(%) 
N

E
WER ,  (3) 

where E denotes the number of misrecognized words in the 

test set and N denotes the number of all words in the test set. 

The speech recognition results are presented in Table II. 

TABLE II. WORD ERROR RATE FOR BASELINE SET AND THREE NEW WORDS 

WITH DIFFERENT SETS OF ACOUSTIC MODELS. 

Acoustic 

models 

WER(%) 

Baseline W1 W2 W3 

GR-25 1.78 1.70 2.63 2.12 

PH-25 1.99 1.90 2.93 2.32 

PH-39 2.09 2.00 3.03 2.32 

PH-45 2.20 2.10 3.13 2.42 

Average 2.02 1.93 2.93 2.30 

 

The baseline test scenario achieved word error rates 

within the range from 1.78 % (GR-25) to 2.20% (PH-45), 

with an average WER of 2.02 % over all four sets of 

acoustic models. These baseline speech recognition results 

are comparable with other similar experimental systems [8], 

[10]. When the new word W1 was added to the test scenario, 

the WER slightly decreased for all four setups although the 

number of words in the vocabulary increased. The relative 

improvement of WER was between 4.50% and 4.76%. The 

acoustic confusability of W1 already indicated that this word 

acoustically-phonetically differed from other words in the 

test scenario. The additional factor that probably led to this 

performance improvement was the length (9 

phonemes/graphemes) of the word W1, which was above the 

average.  

The word error rate increased statistically significantly for 

word W2. The best WER for W2 was 2.63 % (GR-25) and 

the worst was 3.13 % (PH-45). The relative difference of 

WER to the baseline was between 42.27% and 47.75%. A 

detailed analysis of the speech recognition results showed, 

that the misrecognitions of word W2 in the majority of cases 

occurred with the most acoustically similar word from the 

vocabulary. The results of indirect evaluation confirmed the 

predicted acoustic confusability regarding word W2. 

The test scenarios with word W3 achieved WER between 

2.12 % (GR-25) and 2.42 % (PH-45), which represents a 

small degradation of the speech recognition performance in 

comparison with the baseline results. These results are in 

correlation with the predicted acoustic confusability 

regarding word W3. 

A secondary result of this second step of evaluation was 

the comparison between different sets of acoustic models. 

The grapheme type of acoustic models consequently proved 

to have better performances than the phoneme type with the 

same complexity. This confirms that non-trivial grapheme to 

phoneme conversion introduces an additional level of errors 

to the speech recognition performance. The increased 

number of phonemes (from 25 to 45) decreased the 

performance of the experimental setup. The probable cause 

for this degradation was the low frequency of the added 

phonemes, which made it difficult to correctly estimate the 

acoustic models’ parameters. The resulting acoustic models 

lost one part of the generalization effect as a consequence. 

VI. CONCLUSIONS 

This paper presented a novel approach for predicting the 
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acoustic confusability between words within a given test 

scenario for a speech recognition system. Such an approach 

can be used as support during the designing of a spoken 

dialog system, with the goal of improving the speech 

recognition results in advance. The evaluation showed that 

the proposed metric of acoustic confusability between the 

words, successfully predicted the speech recognition 

performance.  

Our future work will be oriented towards including 

additional knowledge about acoustic-phonetic characteristics 

to an acoustic confusability metric. 
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