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Abstract—In this research, an improved algorithm for the 

detection of changes of the correlation structure in multivariate 

time series is proposed. The starting point of the technique is a 

covariance matrix whose entries are the largest entries of a 

cross-covariance matrix which is composed of all pairs of the 

time series reconstructed to an M-dimensional phase space. 

Principal component analysis is performed on this maximized 

cross-covariance matrix, and the overall degree of 

synchronization among multiple-channel signals is defined, by 

synchronization index, as the Shannon entropy of the 

eigenvalue spectrum. Throughout the experiment, the 

effectiveness of the proposed algorithm is validated with 

simulated data – a network of time series generated by 

autoregressive models and a network of coupled chaotic 

Roessler oscillators.  

 
Index Terms—Covariance matrix, entropy, principal 

component analysis.  

I. INTRODUCTION 

Spatially-extended complex dynamical systems may be 

thought of as being composed of numerous constituents 

(dynamically formed subsystems), each having its own 

dynamics. Typically, the relevant state variables of such 

systems can only be viewed through observation functions 

that project the high-dimensional state space onto an 

observation space of much lower dimension, resulting in a 

set of time series [1]. In realistic situations, however, the 

system contains multiple interacting components, and is 

nonlinear, non-stationary and noisy, and one goal of data 

analysis is to detect, characterise, and possibly predict any 

events that can significantly affect the normal function of 

the system [2]. Multivariate analyses of such time series 

may in fact help to give deeper insights into the collective 

dynamics of spatially-extended systems. For example, 

understanding brain function, during both physiological and 

pathophysiological conditions (such as, for example, 

epilepsy), requires the characterisation and quantification of 

the collective behaviour of neural networks that generate 

signals in different areas. Such real-world examples call for 

an effective method of analysing nonlinear and non-

stationary multichannel data collected in a noisy 

environment. For realistic dynamical systems in the 

presence of noise, when the multichannel recordings are 
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usually from signals to which quite different combinations 

of the intrinsic dynamical variables of the underlying system 

contributed, it is often useful to explore weaker forms of 

synchronization, such as phase synchronization [2]. Over the 

last decade, a number of studies have been devoted to 

interactions in spatially-extended systems [1]–[8]. In some 

studies, in particular, a zero-lag (or equal-time) correlation 

matrix, constructed from multivariate data sets, was 

analysed and several matrix-based methods to detect global 

changes in synchronization were proposed. The key point of 

these methods is that changes in the degree of 

synchronization between time series provoke level 

repulsions between Eigen states at both edges of the 

spectrum of the correlation matrix [4], [5]. To quantify the 

degree of uniformity in the distribution of the eigenvalues, 

the Shannon entropy is often used as a robust approach. The 

methods were applied to EEG recordings from epilepsy 

patients and were demonstrated to be able to detect, for 

instance, statistically significant changes in the correlation 

structure of focal onset seizures [4], [8]. Another way to 

study interactions in spatially-extended systems is based on 

a statistical analysis of multivariate phase synchronization 

phenomena by using the phase-coherence matrix [1, 6] or by 

constructing a matrix based on the average phase 

synchronization times (APST) among all available pairs of 

channels [2], [6]. It is argued that the APST can, in general, 

be significantly more sensitive to changes in the degree of 

synchronization than correlations [2]. On the other hand, the 

matrices for phase coherence or the APST are based on the 

Hilbert transformation, on the assumption that time series 

are oscillatory. Multichannel data from a real system are to a 

considerable degree stochastic, with a broad power 

spectrum, as they are corrupted by both internal (e.g. 

dynamic) and external (e.g. measurement) noises, and the 

extracted instantaneous phases often have no physical 

meaning [4]. Multivariate singular spectrum analysis (M-

SSA) [9], [10] provides insight into the unknown or only 

partially known dynamics of the underlying system, by 

decomposing the delay-coordinate phase space of a given 

multivariate time series into a set of data-adaptive 

orthonormal components, and can greatly help phase 

synchronization analysis [9], also when lag synchronization 

occurs. However, the full multivariate singular spectrum of 

processes with broadband power spectrum is not 
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concentrated into a single first largest eigenvalue, and the 

Shannon entropy of this singular spectrum is high even 

when all channels of a system are identical. Therefore the 

effectiveness of the entropy measure is low. Another remark 

is that M-SSA operates on a large covariance matrix, which 

is computed from the full augmented trajectory matrix 

whose size is equal to the product of the number of channels 

and the embedding dimension of the reconstructed phase 

space [9]. As a result, M-SSA becomes computationally 

expensive, especially in a moving-window analysis of non-

stationary data. 

In this paper I present a simple and less computationally 

complex algorithm for the detection of changes of the 

correlation structure in multivariate time series by using the 

maximum linear cross correlation measure for lag 

synchronization. The starting point of the technique is a 

covariance matrix whose entries are the largest entries of a 

cross-covariance matrix which is composed of all pairs of 

the time series reconstructed to an M-dimensional phase 

space. 

II. ALGORITHM BASED ON SINGULAR SPECTRUM ANALYSIS 

OF A MAXIMISED COVARIANCE MATRIX (MCM-SSA) 

Let   {  ( )                } be a 

multivariate time series with D channels of length N. It is 

assumed that each channel has been centred and normalized. 

Each channel can be reconstructed to an M-dimensional 

phase space by selecting the embedding dimension M and 

time delay  . Each phase point in the phase space is thus 

defined by [11] 

  ( )  [  ( )   (   )     (  (   ) )]
 ,  (1) 

where           (   ) , and ( )  denotes the 

transpose of a real matrix. At      the reconstructed phase 

space matrix    with M rows and         columns 

(called a trajectory matrix) is defined by: 

   [
  ( )    (     )
   

  ( )    ( )
] (2) 

and encompasses M delayed versions of each channel. The 

total trajectory matrix of the set   will be a concatenation of 

the component trajectory matrices    computed for each 

channel, i.e.   [          ]
 . This full augmented 

trajectory matrix, which has DM rows of length 

        can be used for multivariate singular 

spectrum analysis (M-SSA) [9]. However, as mentioned 

above, the eigendecomposition of a large       

covariance matrix           in a moving-window 

analysis of non-stationary data becomes computationally 

expensive. The covariance matrix           can be 

rewritten as a block matrix: 

  [

          
          
    
          

], (3) 

with cross-covariance matrix     for all pairs of 

trajectory matrix    in blocks, i.e.             , 

       ,        . Only the largest entries of the 

cross-covariance matrix    (   ) are incorporated in the 

resulting     covariance matrix  ̂. These largest values 

denote the cross-covariance between channels of the 

multivariate time series which are aligned by phase (have a 

similar course in time). It is necessary that     would be 

greater than the expected time delay between dependent 

channels. In order to reduce computational time, the 

resulting     covariance matrix  ̂ is calculated from the 

full       matrix according to the following formula 

 ̂(   )     (   ( ((  (   )   )   

                            (  (   )   )    ))), (4) 

where                . A further reduction of the 

computational time can be achieved by replacing the full 

      covariance matrix   by the       reduced 

covariance matrix           
 , where 

   [             ]
  is a concatenation of the reduced 

component trajectory matrices    ,        , which for 

each channel are defined by: 

    [
  ( )    (     )

  ( )    ( )
]. (5) 

Thus only zero-lagged and M-lagged versions of each 

channel are used. This allows us to capture all lagged 

correlations, and thereby to avoid multiple calculations of 

the covariance between lagged copies, which differ only in 

several time points. The resulting     covariance matrix 

 ̂ is calculated from the       reduced covariance    

matrix according to the slightly corrected formula (4) 

 ̂(   )     (   (  ((  (   )   )   

                           (  (   )   )    ))).  (6) 

A further approach is based on the singular value 

decomposition (SVD) of the maximized covariance matrix 

 ̂ 

  ̂      ,  (7) 

to yield a diagonal matrix   that contains the real 

eigenvalues    of  ̂, and a matrix E whose columns are the 

associated eigenvectors   ,   {     }. The    form a 

new orthogonal basis in the embedding space of   , and the 

corresponding    give the variance in the direction of   . 

The spectral decomposition in Equation (7) determines the 

directions of greatest variance, from largest to smallest, 

subject to the condition that each new direction be 

orthogonal to all preceding ones. The overall degree of 

synchronization among multiple-channel signals shall be 

denoted by the synchronization index   , which will be 

defined as the well-known Shannon entropy of the 

eigenvalue spectrum            

    
 

   
 ∑         

 
   , (8) 
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where      
  ∑   

  are the squared normalized 

eigenvalues.      indicates perfect synchronization and 

     signals complete lack of synchronization. 

III. SIMULATION RESULTS 

We consider a network of time series generated by an 

autoregressive model (AR) as a prototypical model of a 

stochastic dynamical system, to compare the performance of 

the proposed algorithm, based on principal component 

analysis of a maximized cross-covariance matrix (MCM-

PCA), to an M-SSA based method for the overall degree of 

synchronization estimation. The set of D=10 uncoupled time 

series were generated by means of the Matlab GARCH 

module and applying data smoothing. The data were 

generated repeatedly in 20 independent trials. The length of 

this multivariate time series was chosen to be 10,000 data 

points, the size of the moving window    was chosen to be 

1,000 data points and the time interval between two adjacent 

moving windows was 100 data points. The size of the 

moving window defines the time scale on which correlations 

are measured, and a compromise has to be made between 

the time scale given by    and the influence of noise and 

random correlations. Hence, the choice of the length of    

strongly depends on the specific properties of the system 

under consideration, i.e. its typical time scales, the 

magnitude of noise contamination, and the sampling rate of 

the measurement. The signals inside the window were 

normalized channel-wise so that they had a mean of zero 

and unit variance. Because the proposed algorithm is 

applicable largely to multivariate time series, where lag 

synchronization occurs, we progressively inserted, for 

simplicity, lagged copies (with progressively increased lag 

            ) of a single channel in additional to the 10 

existing channels, thus increasing the overall degree of 

synchronization, rather than introducing couplings into these 

processes [4]. The average (over all windows) 

synchronization index was calculated for each trial. In the 

following, we compare the proposed MCM-PCA algorithm 

with its M-SSA counterpart. The synchronization indices 

   ( )  (for the MCM-PCA algorithm) and    ( )  (for the 

M-SSA algorithm) over the number J of additional inserted 

single channel lagged copies were each calculated according 

to Equation (8). 

In order to put the obtained results onto more general 

grounds, we considered also a prototypical model of 

nonstationary dynamical systems, a network of coupled 

chaotic Roessler oscillators under noise [2]. The 

nonstationary nature of the system is manifested by the 

time-dependent coupling parameter. Data processing and 

analyses were performed using software written by Matlab 

(The MathWorks, Natick, MA). 

Fig. 1 shows the increment of the overall degree of 

synchronization among multiple-channel signals over the 

number of single channel lagged copies inserted in addition 

to the existing ones. Note that the direction of change in the 

synchronization indices is opposite to this increment. We 

can see from this figure that the proposed approach appears 

to be more sensitive to changes in the degree of 

synchronization than the method based on M-SSA. To 

compare the effectiveness of the MCM-PCA algorithm and 

M-SSA based algorithm and consider approximately linear 

behavior in   ( ) for          , we have defined for our 

prototype model the following contrast measure [6]   
(           ) (           ) that characterizes the 

sensitivity of the algorithm to changes in the degree of 

synchronization. Further we have calculated the contrast 

measure for each trial and use ANOVA to compare this 

measure for both methods. ANOVA says there is a 

significant difference (p<0,001). 

Fig. 2 shows the time evolution of synchronization 

indices (i. e., Shannon entropy) for a network of coupled 

chaotic Roessler oscillators, where the dashed line indicate 

the full synchronized regime. From Fig. 2 it can be seen that 

the value of the contrast for the Shannon entropy defined by 

M-SSA based method is far less than those defined by 

MCM-PCA based method. 

 
Fig. 1.  Evolution of the averaged over all windows and all trials 

synchronization indices      and      for a network of AR time series versus 

the number J of additional inserted single channel lagged copies. 

 

Fig. 2.  Evolution of the synchronization indexes      and      for a network 

of 10 locally coupled chaotic Roessler oscillators; the full synchronized 

regime is marked by dotted line. 

Fig. 3 shows the averaged relative running time for 

computing synchronization indices according to the MCM-

PCA and M-SSA algorithms versus the embedding 

dimension M, for a network of AR time series and a network 

of coupled chaotic Roessler oscillators of equivalent size. 

 
Fig. 3.  The averaged relative running time for computing synchronization 

indices      and      according to the MCM-PCA and M-SSA algorithms 

respectively, for a network of 10 locally coupled chaotic Roessler 
oscillators and network of 10 AR time series, versus the embedding 

dimension M. 
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The relative running times for both algorithms were 

defined as the relation the time at current M and the time at 

M=10 for the MCM-PCA algorithm. We can see that the 

computational complexity of the MCM-PCA algorithm has 

approximate linear growth with M, whereas the 

computational complexity of the M-SSA algorithm 

corresponds to exponential growth, and at large M 

significantly exceeds the computational complexity of the 

MCM-PCA algorithm. The significant growth of the 

computational complexity of the M-SSA algorithm at large 

M arises from the fact that the singular value decomposition 

of a large       covariance matrix requires a great deal 

of computing time. 

IV. CONCLUSIONS 

A simulation involving a network of AR time series and 

network of 10 locally coupled chaotic Roessler oscillators 

shows that the proposed algorithm, based on principal 

component analysis of a maximized cross-covariance matrix 

(MCM-PCA), is a sensitive detector for phase-shape 

correlations in multivariate data sets, and outperforms the 

method based on multivariate singular spectrum analysis 

(M-SSA) when calculating the degree of synchronization in 

multivariate time series. In both cases the synchronization 

index was defined as the Shannon entropy of the eigenvalue 

spectrum in a sliding window, moved along the tested time 

series. Secondly, the proposed algorithm is significantly less 

computationally complex than the M-SSA based algorithm. 

The difference between computation times is especially 

significant for a large number of channels of multivariate 

data sets and a large embedding dimension, when 

considerable unknown lag between synchronized channels 

must be captured. The computational time is largely defined 

by the size of the covariance matrix          , on 

which the eigendecomposition is performed. In contrast to 

the M-SSA based algorithm [9, 10], where the large 

      covariance matrix is calculated from a fully 

augmented trajectory matrix, in the proposed algorithm only 

the largest entries of the covariance matrix from any pair of 

channels, embedded to an M-dimensional phase space, are 

incorporated in the resulting     covariance matrix. 

These largest values denote the cross-covariance between 

aligned by phase channels of the multivariate time series. 

The algorithm is suitable for the study of correlation 

changes in spatially-extended systems where multiple 

stochastic processes mixed with periodic components occur 

simultaneously and where lag synchronization occurs, such 

as, for example, human brain activity. 
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