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1Abstract—In this study, a new controller design was created 

to increase the control performance of a variable loaded time 

varying linear system. For this purpose, a state estimation with 

reduced order observer and adaptive-LQR (Linear–Quadratic 

Regulator) control structure was offered. Initially, to estimate 

the states of the system, a reduced-order observer was designed 

and used with LQR control method that is one of the optimal 

control techniques in the servo system with initial load. 

Subsequently, a Lyapunov-based adaptation mechanism was 

added to the LQR control to provide optimal control for 

varying loads as a new approach in design. Thus, it was aimed 

to eliminate the variable load effects and to increase the 

stability of the system. In order to demonstrate the effectiveness 

of the proposed method, a variable loaded rotary servo system 

was modelled as a time-varying linear system and used in 

simulations in Matlab-Simulink environment. Based on the 

simulation results and performance measurements, it was 

observed that the proposed method increases the system 

performance and stability by minimizing variable load effect. 

 
 Index Terms—Adaptation mechanism; Lyapunov method; 

Reduced-order observer; Time varying linear system.  

I. INTRODUCTION 

Permanent Magnet DC (PMDC) motors, which are 

frequently preferred since they are easily controlled, have 

been widely used in recent years. These motors have 

important features, such as having no use for excitation 

current, quite low energy consumption owing to the field 

fluxes they produce, and low costs owing to their small sizes 

compared to the other motors. In industrial applications, the 

high performance and stable functioning of the system are 

two very important criteria. In order to meet these criteria, 

many different approaches have been used in the literature, 

such as Proportional-Integral-Derivative (PID) control 

method [1], [2], sliding mode control [3], [4], Field-

Programmable Gate Array (FPGA) controller [5], adaptive 

control [6], fuzzy logic controller method [7], [8], and 

reduced order nonlinear observer [9]. 

Accurately estimating all unmeasurable states of the 

system is an important factor that influences the functioning 
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of the plant in high performance and stability. There are two 

important methods in state estimation called as “observer” 

and “Kalman filter”. The full order observer method is 

applied to estimate all states in the controller designs, and 

the reduced order observer method is applied to estimate 

unmeasurable states only if there are measurable states. This 

control structure is used in particularly induction motor 

control [10] sensorless electric drives [11] permanent 

magnet synchronous motors [12], linear time-delay systems 

[13], aircraft motion control [14], and multi-agent systems. 

Linear–Quadratic Regulator (LQR) control that aims to 

minimize the errors that occur in state output value could 

also be called as “linear optimal state feedback control”. 

This is a method that increases system performance and 

stability. At the same time, the optimal control input is 

produced by using controller gain coefficients computed by 

LQR method. Thus, a response curve close to the desired 

reference value is obtained. LQR control is used with the 

Kalman Filter that estimates the real states of the system in 

noisy environments in state space feedback servo control 

systems [15], [16]. 

In this study, the position control of the servo system was 

employed by using the reduced order observer with LQR 

control method. However, due to the insufficiency of this 

method in the variable load environment, a new approach 

was added to the designed system in order to minimize the 

effects of the system variable load by adding the Lyapunov 

stability criterion based adaptation control method. Thus, a 

new method, the adaptive-LQR method, has been developed. 

Lyapunov stability criteria, one of the adaptive control 

methods, is a widely used approach that increases system 

stability. This method organizes the parameter values based 

on reference model output value targets to increase the 

system performance against the destructive effects. 

Lyapunov-based adaptive control method that is generally 

more effective on the system performance is preferred in 

different fields and control mechanisms. Among the 

applications and the examples of usage area of the 

Lyapunov-based adaptive control method, there are position 

control of permanent magnet synchronous motor [17], [18], 
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X-Y table experimental platforms control [19], [20], DC 

motor speed control [21], and the design of a stable and 

robust tension controller. 

In this article, firstly, the modelling of the variable loaded 

servo system is discussed in Section II. Subsequently, the 

controller structures used in the study are given in detail. In 

Section III, the state estimation of the plant through the 

reduced order observer in a closed loop system is discussed, 

and in Section IV, the Lyapunov criteria are addressed that 

provide stability conditions. In Section V, detailed 

information about the proposed adaptive-LQR control 

method is conveyed to the relevant researcher. Finally, in 

Section VI, simulation results are given demonstrating the 

stability and high performance of the proposed method. 

II.  MODELLING OF THE VARIABLE LOADED SERVO (VLS) 

SYSTEM 

As is seen in Fig. 1, a rotary servo system that can alter 

the load in time was used in the experiments. In industrial 

applications, Permanent Magnet DC (PMDC) motors are 

widely used as an actuator for electromechanical energy 

conversion [22]. It directly provides rotary motion or 

moment and can provide transitional motion or force when 

coupled with wheels or drums and cables. The VLS system 

actuated with PMDC motor, which has the electric circuit of 

the armature, and the variable loaded body diagram of the 

rotor are shown in Fig. 1. VLS plant and PMDC motor 

parameters are given in Table I. 

 
Fig. 1.  Equivalent circuit of the VLS system. 

The following differential equations can be written based 

on the Newton’s law together with the Kirchhoff’s law from 

the Fig. 1: 

 
( )

( ) ( ) ( ),a a b

di t
u t R i t L e t

dt
    (1) 

 
( )

( ) ( ) ( ),m
m m m m l

d t
t J B t t

dt


      (2) 

 
( )

( ) ,m
m

d t
t

dt


   (3) 

where ( )i t  is the armature current, ( )be t  is the back 

ElectroMotive Force (EMF) voltage, ( )m t  is the produced 

motor torque, ( )l t  is the load torque, ( )m t  is the angle of 

the armature, and ( )m t  is the angular velocity of the 

armature. 

The motor torque ( )m t  is related to the armature current 

( )i t  by a constant factor tk , and the back EMF ( )be t  is 

related to the rotational velocity of the armature ( )m t  by a 

constant factor mk , as given the following equations: 

 ( ) ( ),m tt k i t   (4) 

 ( ) ( ).b m me t k t  (5) 

In the VLS system, angular velocity of the load ( )l t  

transmitted by the gearbox from armature velocity ( )m t  

and equivalent armature load torque ( )l t  may be expressed 

as: 

 
1

( ) ( ),ml
t t

n
   (6) 

 ' ( )1 1
( ) ( ) ( ( )),l

l l l l l
g g
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2
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( ) ( ( )),m

l l l m

g

d t
t J B t
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
 


   (8) 

where n  is total gear ratio and g  is gearbox efficiency. If 

(8) is substituted in (2), the general moment expression for 

the motor is obtained as follows 

 
2 2

( )
( ) ( ) ( ) ( ).m

m m m m

g g

J Bd tl lt J B t
dtn n


 

 
     (9) 

TABLE I. VARIABLE LOADED SERVO SYSTEM AND LOAD 

PARAMETERS. 

Symbol Definition Value 

u(t) PMDC Motor Voltage 6 V 

Ra Motor armature resistance 2.6 ohm 

La Motor armature inductance 0.18 mH 

kt Motor torque constant 0.00767 Nm/A 

kb Motor back-EMF constant 0.00767 V/(rad/s) 

n Total gear ratio (N1/N2) 70 

g  Gearbox efficiency 0.90 

Jm Motor inertia 4.6×10-7 kg.m2 

Bm Motor viscous coefficient ≅0 (negligible) 

Jlin 
Initial load and gearbox 

moment of inertia 
4.83×10-7 kg m2 

Jlsub 
Subsequent load and gearbox 

moment of inertia 
3.41×10-3 kg m2 

Blin 
Initial load viscous damping 

coefficient 
4.41x10-6 Nm/(rad/s) 

Blsub 
Subsequent load viscous 

damping coefficient 
4.41x10-4 Nm/(rad/s) 

 

The following equations are obtained for the state space 

expression of the system by using (1), (3)–(5), and (9): 

 
( ) 1

( ) ( ) ( ),a b
m

a a a

R kdi t
i t t u t

dt L L L
     (10) 

 
( )

( ) ( ),
eqm t

m
eq eq

Bd t k
i t t

dt J J


   (11) 
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( )

( ),m
m

d t
t

dt


  (12) 

where: 

 
2

 ,  eq m

g

JlJ J
n

   (13) 

 
2

.eq m

g

BlB B
n

   (14) 

If (10)–(12) are arranged in state space model and 

armature angle is accepted as the output, the state space 

expression of the servo system is obtained as (15) and (16): 

 ( ) ( ) ( ),x t Ax t Bu t   (15) 

 ( ) ( ),y t Cx t  (16) 

where state variables are defined as 

 

1

2

3 1
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and the state input and output matrices are obtained as: 
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  1 0 0 .C   (20) 

III. STATE ESTIMATION WITH REDUCED-ORDER OBSERVER 

The full-order observer is a method that is preferred to 

estimate all states of the system. Observer design at the 

degree of kth  requires for k  number of system states. 

However, there are both measurable and unmeasurable states 

in all estimated states. An observer design at  k n  degree 

is enough when we assume n  number of measurable states 

for the same system. Reduced-order observer structures are 

commonly used for system designs that provide ease of 

operation by reducing the degree of observer. 

When a system design is performed and 1x  that is 

measurable state and ex  that is unmeasurable state, the term 

of system output ,y  state vector ,x  and partition the state 

equations are as follow: 

  1
1 0 0 ,y x Cx x    (21) 
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There is a need for determining eigenvalues 

  , ...,1 2 3 1, , ,e e e n e      which provide stability criterion 

for defining characteristic equation in the design of an 

optimum reduced-order observer. Then, the gain matrix 

calculation  eK  that is fit for these values is performed: 
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where  0 1 2, ...e e n ea a a   values in (27) are the characteristic 

coefficients of the open loop reduced-order observer: 
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where: 
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In the first case,  s  is defined as characteristic equation 

for the closed-loop poles, which we then evaluate for 

.ees A  Under these circumstances, the equation of 

Ackermann 
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where 

 1 2
2 2 1( ) .n n

ee ee n ee eeA A A A I    
      (32) 

Define reduced estimated states 1ˆex  

 1ˆ ˆ .e ex x K y   (33) 

Then, all states x̂  

 1ˆ ˆ .e ex x K y   (34) 

Finally, the reduced-order observer equation is given 

below 

 

 

  

 

1 1 1

1 11 1

1

ˆ ˆ

.

e ee e e e

e e ee e e e

e e

x A K A x

A K a A K A K y

B K b u

 

   

 
 (35) 

The block diagram that is fit for this equation is 

represented in Fig. 2. 

 
Fig. 2.  State estimation with reduced-order observer block diagram. 

IV. LYAPUNOV STABILITY CRITERION BASED ADAPTATION 

MECHANISM  

A large majority of studies about the adaptive control in 

the literature include “Lyapunov stability” concept. The 

stable working area of the system and Lyapunov stability 

criteria are determined by taking the definitions and theories 

as references. 

Let x  be a vector; (x)V  is scalar function of x . 

Definition 1: (x)V  function is positive definite for states 

below: 

 ( ) 0; 0 and ( ) 0, 0.V x x V x x      (36) 

Definition 2: (x)V  function is positive semi-definite for 

states below: 

 ( ) 0; 0 and ( ) 0, 0.V x x V x x     (37) 

Definition 3: (x)V  function is negative definite for states 

below: 

 ( ) 0, 0 and ( ) 0, 0.xV x x V x      (38) 

Stability status of the system is understood by using 

following theorems. 

Theorem 1: Let us think an equilibrium point. If the 

neighbors of this point are positive definite (x)V  function 

and negative semi-definite (x)V  function, this equilibrium 

point will be stable. 

Theorem 2: If the neighbors of this equilibrium point are 

positive definite and have (x)V  function and negative 

definite (x)V  function, this equilibrium point is 

asymptotically stable. 

Theorem 3: If the conditions in Theorem 2 are provided 

and (x)V  function is unbounded, the system is globally and 

asymptotically stable. 

V. STATE ESTIMATION WITH REDUCED-ORDER OBSERVER 

AND ADAPTIVE-LQR CONTROL 

The proposed control structure in the study is given in 

Fig. 3 below. Initially, the optimal feedback gain matrix 

values Klqr  for LQR were obtained from the Riccati 

equation for the initial load. These obtained LQR gain 

parameters Klqr  are constant values that do not change over 

time. Therefore, optimal control is not provided with these 

Klqr  parameters when the load changes. When Lyapunov 

stability criterion based adaptation mechanism is added to 

the system, the state feedback gain matrix values (Knew) will 

change adaptively, i.e. adapt to the environmental conditions 

in variable load situations. 

 
Fig. 3.  Adaptive-LQR control block diagram. 

Figure 4 shows the block diagram of the Lyapunov based 

adaptation mechanism. The reference signal r(t), states that 

are estimated by reduced-order observer, and LQR output 

that is obtained for initial load are defined as inputs in this 

related block. In the system, different adaptation blocks for 

the states that are position 1( ),x  speed 2( ),x  and current 

3( )x  are designed. The first block provides position control; 

the second block provides speed control, and the third block 

provides adaptation for the current control. The reference 

input (t)r  is used for the first block and reference input 

wref  data for the second block are defined as the output of 

the first block. Similarly, the reference input iref  of the 

third block is defined as the output data of the second block. 
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In this regard, the purpose of this research is to perform a 

new adaptive algorithm that ensures optimal state feedback 

of the system on variable loads. Feedback gain value newK  

in this algorithm that is designed to fit for following 

equations varies based on the environment conditions. 

Hereby, if the gain matrix value at discrete LQR output 

and the adaptively produced feedback gain value are, 

respectively, defined as  1 2 3lqrK a a a  and 

 1 2 3 ;newK b b b  update equations of the new adaptive 

gain matrix value are obtained by using adaptive 1,u  ,2u  

and 3u  values as follows: 

 1
1 1

1

,
u

b a
x

   (39) 

 2
2 2

2

,
u

b a
x

   (40) 

 3
3 3

3

.
u

b a
x

   (41) 

Hereby, the adaptive ,1u  2 ,u  and 3u  values are 

separately obtained via model reference adaptive control 

approach by utilizing the reference model defined below. 

Adaptive output 1u  is obtained step by step as above; the 

similar steps are also applied for 2u and 3u  outputs. 

 
Fig. 4.  Lyapunov stability criterion based adaptive mechanism. 

By taking the Laplace transformation of (10)–(12), the 

quadratic transfer function of the servo system is obtained as 

in (42) 

 
( )

,
( ) ( )

Y s b

U s s s a



 (42) 

where b and a coefficients are obtained as: 

 t

a eq

k
b

R J
 ,  (43) 

 

 .
a eq t b

a eq

R B k k
a

R J


  (44) 

Here, aL  is neglected because it is a very small value and 

it reduces the controller structure for adaptive control by one 

degree and provides an easy solution.  

Accordingly, there is a need to know a quadratic system, a 

quadratic reference model, and mathematical definitions 

belonging to the control input based on the controller 

parameters to make a proper to Lyapunov stability theory. 

Let us assume that these sentences are defined as reference 

model in (45), plant model in 46), and adaptive control 

signal in (47): 

 
2

2
,m m

m m

d y dy
a b r

dtdt
    (45) 

 
2

,12

d y dy
a bu

dtdt
    (46) 

 1 1 2 .
dy

u r
dt

    (47) 

Here, 1  and 2  refer the control parameters, y  is the 

plant output, my  is the reference model output, and r  is the 

reference input signal. Tracking error of the control system 

is given in (48) 

 .me y y   (48) 

By subtracting the (45) from (46), we get 

 

22 2

12 2 2

( ).

m
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d yd e d y dy
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     

    (49) 

Equation (50) is obtained if (47) is written instead of 1u  

statement in (49). If we add and subtract m
dy

a
dt

 statement to 

both sides of equilibrium in (50)–(54), equations below are 

obtained. The derivative equation of the error is found in 

(42) after the required calculations are actualized: 
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1 22
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    2 1 .m m m
de

a e b a a y b b r
dt

         (54) 

In (54), the required conditions need to be found for 

trajectory error to converge to zero. Those conditions are 

provided by 2 mb a a    and 1 mb b   equations. Control 

parameters should be well organized to increase system 

performance. Lyapunov function that is given in (55) is used 

to obtain the desired parameter values. Lyapunov gain 

values in this equation are defined by 1  and 2.  Since 

these gain values are bigger than zero, 1 0b   and 2 0b   

equations are bigger than zero; so, (55), `(56) statement is 

obtained: 
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2 2 2
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v e e
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 
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 

  
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As is understood from the Section IV, the Lyapunov 

function needs to be bigger than zero for the system to be 

stable. Moreover, the derivative of the same function needs 

to be smaller than zero. Below equation can be obtained 

when the derivative of (56) that is defined as Lyapunov 

function is taken 
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By reference to (57), the derivative expression of the 

function becomes smaller than zero if the parameter values 

are obtained. Accordingly, the stability condition of the 

system is ensured if the parameters are updated as follows: 
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VI. SIMULATION RESULTS 

The system proposed for the study and given in Fig. 3 is 

designed for application in simulation environment, and thus 

experimental results are obtained. In the first experiment, the 

load was kept constant at the initial value ( , )lin linJ B  and 

was not changed during the test period. The system output 

responses were obtained separately for the state estimation 

with reduced-order observer by LQR control system (not 

included adaptive mechanism) and adaptive-LQR control 

system. The initial load values are given as 

7 24.83 10linJ kg m  , 64.41 10 / ( / s)linB Nm rad   in 

Table I. In this case, the plant parameters A, B, C are 

obtained as follows: 

 4

14444,44 42.61 0

16670 21.73 10 0 ,  

0 1 0

A 

  
 
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  (63) 

  0 0 1 .C    (64) 

In the second experiment, the load was changed to 

 and lsub lsubJ B  at 21 seconds from the initial load value in 

the system and the response curve was obtained for reduced-

order observer and adaptive LQR system. The variable load 

values are given as 
3 23.41 10

lsub
J kg m   and 

44.41 10 / ( / sec)lsubB Nm rad  in Table I. 

In addition, if we choose the same R and Q parameters for 

the Kalman filter and LQR control as follows, the LQR gain 

is found as  1.1036 0.9926 1 .lqrK   

In the design of the Lyapunov based adaptive control 

system, a 2nd order system given in (65) is used as a 

reference model. Here, the reference model has been created 

in accordance with both settle time and maximum overshoot.  
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 (65) 

When adaptive-LQR and reduced order observer with 

LQR control methods are applied in the system, the results 

for unvarying system are shown in Fig. 5 and Fig. 6.  

 
Fig. 5.  Proposed control method in unvarying system. 

Examining the error change (see Fig. 6), it is concluded 

that the position output signal rapidly catches the reference 

signal. As is shown in Table II, comparing the results based 

on the performance measurements, it is understood that the 

proposed system produces better results and has a high 

performance. 

One of the most remarkable characteristics of the adaptive 

state feedback control method is that it compensates the 

effects, such as variable load. 
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TABLE II. PERFORMANCE MEASUREMENT. 

Method 1  2  3  4  5  6  ISE IAE ITAE 

Reduced order observer with LQR - - - - - - 3.03 7.78 270.8 

Adaptive-LQR 49.7 19.9 32.3 14.7 32.2 12.4 0.70 1.67 37.6 

 

 
Fig. 6.  Proposed control method error change in unvarying system. 

The initial load values are changed to 

3 23.41 10
lsub

J kg m  , 
44.41 10 / ( / s)lsubB Nm rad   

in the 21st  to generate variable load. The responses of the 

adaptive-LQR and other control method are given in Fig. 7, 

and effects of the variable load that occured after the 21st  

second on the response curve of the system is shown in Fig. 

8 clearly. Also, change of feedback gain matrix value newK  

is given in Fig. 9 and Fig. 10. Here, it is observed that the 

gain matrix newK  value changes in accordance with the 

environmental conditions and rapidly minimizes the load 

effects.  

 
Fig. 7.  Proposed method in variable load. 

 
Fig. 8.  Zoom area of Fig. 8 (after t = 21st). 

 
Fig. 9.  Change of feedback gain matrix (Knew) value. 

 
Fig. 10.  Zoom area of Fig. 9 (after t = 21st). 

VII. CONCLUSIONS 

The designed new control system with LQR and reduced-

order observer is based on adaptive state feedback control 

that compensates the disruptive effects, such as variable load 

and increases the system performance. This controller 

structure was successfully used in trajectory control of a 

servo system that can change the load over time in 

simulation. As is known, it is not possible to completely 

remove the disruptive effects. The system can estimate the 

states of the variable loaded servo system, thus the 

disruptive effects can be minimized. A stable system design 

that can comply with the environmental conditions was 

prepared. It is observed on the simulation results that the 

proposed method gives quite good results in controlling the 

systems that are exposed to the adverse effects like the 

variable load. The error between system output response and 

reference input signal was minimized in time. It is 

understood from the system results that the system control 

parameters can adapt itself in time.  
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