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1Abstract—Robotization has become common in modern 

factories due to its efficiency and cost-effectiveness. Lots of 

robots and manipulators share their workspaces with humans 

what could lead to hazardous situations causing health damage 

or even death. This article presents a real-time safety system 

applying the distributed computing paradigm for a 

collaborative robot. The system consists of detection/sensing 

modules connected with a server working as decision-making 

system. Each configurable sensing module pre-processes vision 

information and then sends to the server the images cropped to 

new objects extracted from a background. After identifying 

persons from the images, the decision-making system sends a 

request to the robot to perform pre-defined action. In the 

proposed solution, there are indicated three safety zones 

defined by three different actions on a robot motion. As 

identification method, state-of-the-art of Machine Learning 

algorithms, the Histogram of Oriented Gradients (HOG), 

Viola-Jones, and You Only Look Once (YOLO), have been 

examined and presented. The industrial environment tests 

indicated that YOLOv3 algorithm outperformed other 

solutions in terms of identification capabilities, false positive 

rate and maximum latency. 

 
Index Terms—Artificial intelligence; Collaborative robots; 

Neural networks; Safety system. 

I. INTRODUCTION 

Robots are widely used in modern industry mainly due to 

their effectiveness, load capabilities, precision, and 

repeatability. Their unique properties like fitting to the tasks, 

customizable smooth motion, and environmental awareness 

increase their applicability in difficult, monotonous tasks of 

various branches [1]. 

Nowadays, the robots and manipulators are often placed 

in workspaces, which they share with humans in the form of 

a collaborative framework, e.g., in manufacturing or 

assembling processes. Such machines are called 

“collaborative robots” or in short “co-bots”, which belong to 
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Intelligent Assist Devices (IADs) technology branch [2] 

holding $12 billion by 2025 [3]. Especially, the small and 

medium size companies benefit from robotization and 

automatization. However, the costs are crucial for them. 

Because of robot’s dynamic and close human-machine 

interaction, the health and safety issues become major 

technical challenges [4]. It has been reported that between 

1984 and 2017, only in the United States, 39 accidents 

occurred mainly due to a lack or insufficiency of a security 

system. Among casualties, there were 28 robot operators, 7 

maintenance workers, and 4 programmers [5].  

One of the challenges of developing a highly reliable 

safety system is a requirement of a real-time performance in 

changeable surroundings without compromising co-bots’ 

productivity. Such a “smart” system has to detect possible 

dangers, identify their level, and then undertake pre-defined 

action. A short reaction time, reliability, and high detection 

and identification capabilities are crucial requirements for a 

suitable safety system of co-bot.  

The vision-based solutions are the most effective in 

monitoring. Therefore, they became the core of modern 

safety systems. However, the amount of data needed to be 

processed in real-time by the system grows rapidly with the 

augmentation of observation zones. In most of the 

applications, co-bots have to work as standalone units being 

a part of technological processes. In such cases, a person 

may approach the co-bot from any side. Therefore, the safety 

system needs to monitor all the surroundings. With the need 

to cover wider safety zone, number of cameras increases, 

which results in a request for more computational capacity. 

This is the main challenge of developing modern and cost-

effective safety systems, especially accessible for medium 

and small size companies.  

The proposed solution combines the Internet of Things 

(IoT) technology within a distributed computing paradigm. 

The developed safety system consists of independent 

sensing/detection units, whose number and deployment 

could be customized for a desired observable area to match 

the particular co-bot’s tasks. Thanks to the designed 

Graphical User Interface (GUI), each module can be easily 
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re-configured. The data from up to six sensing and detecting 

units are sent and then processed in real-time by a capable 

Graphical Processing Unit (GPU) server what makes the 

proposed solution cost-effective.  

II. SURVEY OF RELATED WORKS 

Detection of human presence within the robot vicinity is a 

complex and demanding task. Numerous attempts have been 

made to develop a robust reliable detection system. This 

survey of related works focuses on the scope of modern 

technologies and sensors for both the co-bots, manipulators 

and mobile platforms. Apart of available hardware solutions, 

the state of the art of methods and algorithms used is 

presented. 

A. Technologies and Sensors 

The conventional approach to a safe Human-Robot 

Collaboration (HRC) is a pre-collision strategy commonly 

applied in the manufacturing environment [6]–[8]. To ensure 

the safe co-operation between humans and robots, a human 

detection [9], [10], human pose estimation [11], and obstacle 

avoidance [12] are typically needed. Many solutions, which 

have been already implemented on co-bots safety systems 

apply depth sensors [7], [8], [11], vision systems [13], 

LiDAR [14], [15] or RADAR [16] technologies. In order to 

detect the physical contact between human and robots, touch 

sensors are useful [17], [18]. 

Nevertheless, due to the information relevancy about the 

object’s morphology, a vision technology becomes the most 

popular approach in safe HRC. In general, there are two 

kinds of vision systems used in safe HRC: single camera 

[19], [20] and stereo vision [7], [21]–[23]. While the 

standalone, however, the more expensive and demanding 

stereo vision technology allows estimating the 3D 

coordinates of the detected object. The single camera 

solutions require additional sensors or systems for proximity 

measure.  

Due to required localization precision, the stereo vision 

uses the High-Resolution (HR) cameras [24]–[26], while the 

single camera system does not demand expensive HR 

solutions to detect the object and regular industrial tools are 

sufficient [27]–[31]. 

B. Object Localization Techniques for Vision Systems 

The need for the localization of detected object in real-

time usually leads to a fusion of methods or algorithms, 

which combine the data from various sensors. One of the 

first approaches used a single camera vision and ultrasonic 

sensing for obstacle detection [27]. The system distinguishes 

between the stationary and moving objects. Stationary 

objects are detected using the vision system by means of 

edge detection, whereas the moving objects are detected 

using the ultrasonic sensing. In [12], authors present the pre-

collision strategy by exteroceptive sensing framework based 

on multiple Kinects deployed in the working cell. A similar 

approach is applied in the solution proposed by Mohammed, 

Schmidt, and Wang [8], where robot’s virtual 3D models are 

associated with human operators using a series of depth and 

vision sensing units for online collision detection and 

avoidance in an augmented environment. 

Other vision-based solutions use stereo vision for 

identification and localization of detected object. Ebert et al. 

[24], [25] developed a collision detection system based on a 

set of images taken simultaneously by several cameras. Here, 

the obstacle shape is reconstructed by the look-up-table-

based fusion algorithm and the 3D images. The real-time 

human tracking system proposed by Petrovic et al. uses 

stereo vision and the Kalman filter for object tracking [26]. 

This system enables the object detection with 96 % 

reliability of classification performance. The reduced 

computational complexity on the determined region of 

interest allow the robust real-time performance.  

C. Detection, Identification, and Classification algorithms 

The object detection algorithm is the core of each vision 

safety system either it is based on single camera or stereo 

vision approach. However, the vision-based real-time object 

detection algorithms that may be implemented in safety 

system have a relatively short history. The main challenges 

of the systems are the computational complexity and 

diversity of cases (humans, environmental conditions). 

The Viola-Jones object detection released in 2001 

organizes Haar-like features in so-called “classifier cascade” 

what simplifies the task of Haar classification and ensures 

better performance [33]. The Histogram of Oriented 

Gradients (HOG) released in 2005 is a feature descriptor and 

often is combined with a support vector machine for 

identification [29]. Both solutions are very fast. The 

approaches that uses use Haar-like feature extraction (Viola-

Jones) for face detection allows identifying objects at rate of 

an half a second [34]. Redmon et al. propose the safety 

system working in real-time on 45 Frames Per Second (FPS) 

with 25 ms latency based on the fast-single layered Neural 

Network (NN). However, to reduce the computational 

complexity, the resolution of the image has to be downsized 

to 448 px448 px [28]. Although the system localization 

errors are evenly distributed up to 19 %, it shows better 

performance than other object detection algorithms like HoG 

[29], Harr [30], Deformable Parts Model (DPM) [31], 

Region-based Convolutional Network method (R-CNN) 

[32], and Speeded Up Robust Features [35]–[39]. 

With the grow of GPU capabilities, the Artificial 

Intelligence-based systems (AI) become more and more 

powerful. Since 2012, when Krizhevskys’ Convolution 

Neural Network (CNN) [40] has won the ImageNet 

competition, NN becomes the new standard for image 

classification. AI outperforms others approaches in human 

recognition and prediction of human activity within the co-

bots’ workspace. An example is human activity prediction 

proposed by Ding et al. in [41]. Another AI-based solution 

is a context-aware safety system for real-time HRC in terms 

of collision sensing and path planning. The essential 

system’s feature is context-aware human pose recognition, 

which was carried out by the CNN [42]–[45].  

The deep learning became a breakthrough in computer 

vision and object detection. Girshick et al. propose the 

Region-CNN (R-CNN) algorithm, which selectively 

searches regions in the image for a further classification 

purpose [46]. Another object detection algorithm presented 

in [47] differs from the region-based solutions. However, the 
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best results are obtained with the You Only Look Once 

(YOLO) Deep Neural Network (DNN) [28]. 

III. PROBLEM STATEMENT, MAIN OBJECTIVES AND 

CONTRIBUTIONS 

As the survey of related works shows, none of the existing 

safety systems enables the real-time robust detection and 

identification of humans or other objects approaching the 

operational zone of co-bots. So far, the best results are 

achieved from the vision-based systems. However, a needed 

number of high-resolution cameras to cover the entire 

surroundings of the machine results in a demand of high 

computational capability, which challenges the system real-

time performance. Furthermore, an efficient implementation 

of the identification algorithms requires a large number of 

GPU platforms, which further increases the solution’s price. 

To overcome these problems, designers are forced to reduce 

the image resolution what affects the system performance in 

terms of its robustness and accuracy.  

The main objective of this paper is to find a reliable cost-

effective real-time solution of a safety system of co-bot for 

detecting, identifying, and localizing humans approaching 

the operational zone, and providing suitable information to 

the co-bot control system. The system reliability in 

changeable surroundings without compromising machine 

productivity is crucial. 

The proposed safety system has a modular structure 

consisting of independent sensing/detection units, whose 

number and deployment could be customized for the desired 

observable area and co-bot’s tasks. Each sensing/detection 

unit is composed of a HD vision camera, an ultrasound 

sensor directable by a stepper motor, and a suppletory 

controller. The included microcontroller aims on 

preprocessing the HD images for motion detection. To fulfill 

the real-time request, the authors propose to apply the 

distributed computing concept. Therefore, the GPU server 

with an implemented AI algorithm analyses the images of 

the detected objects, localizes, identifies them, and then 

classifies potential threats. 

The solution is implemented on an off-the-shelf 

component of the Raspberry Pi microcontroller for 

processing and controlling unit for motion detection and 

proximity estimation. The motions detection is based on a 

HD single camera and proximity estimation ultrasound 

sensors. The NN-based decision-making system for 

identification and classification is implemented on GPU with 

Linux machine. The system was verified on Braccio 

Tinkerkit robot [48]. 

IV. SYSTEM DESIGN 

In this research, the User-Driven-Design (UDD) 

methodology is used [48], where the design process is 

systemized and both stakeholders and future users are 

involved at each design stage. The defined general and 

itemized functionalities are summarized in Table I. The 

demands that the system should be easy to install, operate 

and maintain, along with low cost and size, are classified as 

overall constraints. Both general and itemized 

functionalities, particular constraints, and possible 

technologies and algorithms are summarized in Table I. The 

selected most suitable technologies and algorithms are 

indicated in bold. 

TABLE I. GENERAL AND ITEMIZED FUNCTIONALITIES OF DEVELOPED SAFETY SYSTEM. 

Functionalities 

Particular Constrains Possible Technologies and Algorithms 

General Itemized 

Safety System 

Reliability, 

Cost-

effectiveness 

Real time performance, 

Distance range < 5 m 

RFID, RTLS, Vision, Ultrasound, Distributed computation, 

CUDA, GPU 

Object detection 
Image 

segmentation 

Detected object size > 1000 px, 

Computation rate < 10 FPS 

Vision system, Ultrasound sensor, Radar, Lidar, 

Background subtractor, Cropping 

Detection 

Classification 

Human, 

another objects 

Reliability > 98 %, 

Simultaneously up to 4 people/objects. 

Neural networks, Genetic algorithms, Decision Trees Haar, 

Hog, YOLO 

Object localization 
Distance 

estimation 

Latency < 200 ms 

Localization uncertainty < 10 % 

Vision, Radar, Lidar, Ultrasound sensors, Stereo vision, 

Triangulation, Beamformer, Pulse-echo technique 

Threat classification 
Classification 

zones 

Safe Zone (2 m–5 m), 

Unsafe Zone (1 m–2 m), 

Hazardous Zone < 1 m. 

Machine Learning, Distributed computation, Decision 

trees, SVM, kNN, Deep NN 

Co-bot motion control 
Speed control, For unsafe zone speed reduced by half 

Programmable Safety Control, Application Programming. 

Stop control For hazardous zone 

Interfacing 
Connection 

reliability 

Ping < 100 ms, 

Dropped signals rate < 1 per day 
Bluetooth, Wi-Fi, ETHERNET, TCP/IP, UDD 

The request was that the designed safety system should be 

able to detect and track simultaneously up to four moving 

objects from at least five meters distance from the robot. The 

system has to ensure the real-time performance what means 

1 s response time from the object detection to robot reaction, 

which is necessary to smoothly change the co-bots’ path. 

From 5 m distance, the safety system has to detect 

movements caused by objects of at least 350 cm2 what 

corresponds to size of the human head. System performance 

needs to be highly reliable in a changeable light environment 

from at least 100 lumens. The desired reliability of human 

identification shall exceed 98 %. Localization uncertainty 
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sufficient for proximity sensing subsystem needs to be 10 % 

and the maximum latency is 200 ms.  

The system has to perform specified actions when a 

human is approaching to two of the three defined safety 

zones. In Safe Zone, which is situated between 2 m and 5 m 

from the robot, the object should be only tracked, non-action 

is required. In Unsafe Zone, which is situated between 2 m 

and 1 m, the system should reduce the working speed by 

half. In Hazardous Zone, which is less than 1 m from a 

robot, all robot’s movements have to stop.  

The determined functionalities and constrains were 

evaluated as technically accomplishable and feasible. The 

possible technologies and algorithms presented in Table I 

indicate that there are several ways to solve the problem. 

However, the overall constrains of small size and low cost 

limit the use of certain solutions. 

Finally, the modular system based on distributed 

computation paradigm using a microcontroller Raspberry Pi 

and only one GPU server is selected. Sensing/detection 

modules are responsible for motion detection and distance 

measurement, and the CPU server’s main tasks are to 

identify the selected object and to make decision. Each 

sensing/detection module is equipped with a camera, 

microcontroller, and ultrasound distance sensor that 

constitute a low cost solution, which does not require 

substantial computation power.  

Among the excluded solutions, there is, e.g., Radio-

Frequency Identification (RFID) technology, which requires 

tagging of all tracked objects what is not acceptable since 

someone without a tag can intrude co-bots’ operating zone. 

Other technologies, such as Compute Unified Device 

Architecture (CUDA), in turn require a significant amount of 

computing power and/or are high price solutions. 

The chosen solution of object detection, localization, and 

classification is based on vision signal processing by image 

background subtraction, cropping, and Machine Learning 

algorithms. The ultrasound distance measurement applies 

pulse-echo algorithms. All algorithms used are characterized 

by their simplicity, reliability, and low computational 

complexity. 

For threat classification, DNN is chosen, which analyses 

vision and distance data from the modules. The DNN is 

chosen due to its high reliability. The co-bot motion is 

controlled by means of Programmable Safety Control (PSC), 

the software built in co-bot. As a communication medium, 

the TCP/IP and Ethernet are used because of their high 

speed, reliability, interference immunity, and safety of data 

transfer. 

V. SYSTEM DEVELOPMENT 

A. Architecture of the System 

The architecture of the system is presented in the Fig. 1. 

The system is designed based on IoT concept, where a user 

has easy access to each subsystem through the GUI. All data 

of the previous detections and regarding system performance 

are stored on one database.  

The safety system is composed of sensing/detection 

modules, decision-making system, and robot, which are 

connected via Ethernet. Data processing is decentralized, 

where the decision-making system deals with the 

preprocessed data from the sensing/detection modules. 

Each sensing/detection module is equipped with the vision 

and ultrasound system, respectively. The main task of vision 

system is motion detection, whereas the ultrasound system is 

responsible for distance measurement. The core detection 

algorithm is implemented on the microcontroller, which is 

of-the-shelf Raspberry Pi. When object motion is detected, 

the ultrasound system is directed towards the object to 

measure the accurate distance. The view of the designed 

single sensing/detection module is presented in Fig. 2. 

 
Fig. 1.  Architecture chart of a designed safety system. 

 
Fig. 2.  Single sensing/detection module composed of camera, ultrasonic 

sensor, and stepper motor. 

The number and configuration of the sensing/detection 

modules depend on customer’s request and co-bots’ vicinity. 

To cover all the surroundings, up to 6 modules are needed. 

The module configuration schema is presented in the Fig. 3, 

where Zone A (depicted in black) is the co-bot working area, 

Zone B (depicted in red) is the hazardous zone, where a 

direct contact between machine and human can occur, and to 

prevent it the co-bot have to be stopped. Zone C (depicted in 

yellow) is the warning zone, where a detected object has to 

be observed and the co-bot motion speed needs to be 

reduced by half. Zone D (depicted in green), which is the 

detection “safe” zone (2 m–5 m), where the preliminary 

object detection and identification are requested. 
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Fig. 3.  Safety system configuration schema of sensing/detection modules. 

The Field of View (FoV) of the single sensing/detection 

module covers a 60 ° circle section of a range up to 5 m. 

One can observe that there exists a small dead zone between 

neighboring sensing/detection modules. However, its size is 

smaller than human’s head, and therefore it can be neglected 

since it does not affect the system performance in terms of 

its security. The dead zone is in the shape of an isosceles 

triangle with a base of 25 cm and a height of 50 cm.  

The cropped images consisting of detected objects are 

combined with information about their location, and then 

sent to the decision-making system for identification. The 

decision-making system is implemented on a GPU. After a 

positive identification, the system sends to the Robot 

Operating System (ROS) the warning about a presence of an 

identified human within a defined detection zone. 

Meanwhile, the data are backuped at a database with the 

images and detailed information about the event. Status of 

each sensing/detection module is available online in the 

TCP/IP and Json standards. This information is accessible to 

the user through the GUI. 

The main task of the decision-making system is to identify 

the detected object. Thanks to the distributed computation 

approach, the decision-making system is able to handle data 

from up to six independent sensing/detection modules. 

B. Model of the System 

The flowchart of co-bot safety system algorithm is 

presented in Fig. 4, where the sensing/detection modules are 

implemented on embedded microcontrollers, and the 

decision-making system is executable on the servers’ GPU. 

 
Fig. 4.  The co-bot safety system flowchart. 

The algorithm of sensing/detection module is based on the 

motion detection principles (Fig. 5). First, the background 

and current images are converted into greyscale, where 0 

represents black color and 255 is white one. After blurring, 

the absolute differences between corresponding pixels of the 

two images are calculated. Next, the differentiated image is 

contoured and filtered by thresholding, which removes 

artefacts caused by the light changes, etc. As a result, an 

image binary matrix is obtained, where 0 stands for detected 

object and 1 means background. Later, the area of the 

detected object is calculated from the object contour. If the 

area is bigger than assumed one, the cropped frames are 

defined and applied on the original color image.  

Once the object is detected and its direction is localized, 
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the ultrasound sensor is directed towards the object to 

measure its distance from the co-bot. Finally, the object’s 

cropped image together with its localization data are sent to 

the decision-making system to decide whether to perform a 

suitable action. The cropped frames together with distance 

data are fed to a Machine Learning algorithm to classify if 

the detected object is a person. The algorithms tested for this 

application were: the Histogram of Oriented Gradients 

(HOG [29], Viola-Jones [33], and YOLO [28]. 

To improve the safety system robustness, valid and 

invalid detection counters are included. The goal of this 

solution is to reduce the overall false detections introduced 

by, e.g., isolated detections at the border of detection area or 

false detections caused by lighting or background changes. 

When a number of invalid detections is higher than assumed 

threshold one, then it is supposed that lighting or 

background had changed and a new background frame 

would be triggered. Also, a number of valid detections needs 

to exceed a threshold number to trigger an action from the 

robot control system. 

 
Fig. 5.  Image processing part of co-bot safety system implemented on sensing/detection module. 
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C. Prototype of the System 

A picture of two sensing/detection modules is presented in 

Fig. 6. In Fig. 7, the designed safety system covering 360° 

FoV observation area embedded in the co-bot is depicted. 

All the sensing/detection modules are installed on the co-bot 

base. Each module includes a fixed 8 Mpx camera [49], a 

30 kHz ultrasound sensor of range from 2 cm to 5 m 

[50], a bipolar four-cord stepper motor with step resolution 

0.9˚ [51], Raspberry Pi 3 B+ with 1.4 GHz CPU, 1 GB 

RAM, ARM architecture, and 16 GB micro memory card 

[52]. The 5 V DC, 2 A power supply for all the components 

is also applied [53]. The decision-making system comprises 

an industrial Dell workstation with I7-8750H six cores 

3.1 GHz CPU, 32 GB RAM, and NVIDIA GeForce GTX 

1050 Ti GPU with 768 CUDA cores and 4 GB RAM [54]. 

 
Fig. 6.  Two-module sensing prototype of the safety system. 

 
Fig. 7.  Model of the robot with proposed safety system installed in its 

base. 

The parameters of image pre-processing algorithms were 

chosen heuristically based on tests performed in various light 

conditions and on different backgrounds. The number of 

persons appearing in the detection area, their appearance and 

growth also varied. Based on the test results, the blurring 

frame size was chosen for 11 px. A smaller frame value 

would increase the contour precision, which on other hand 

would cause more false positive detections. A greater 

blurring frame could cause division of the detected object 

into smaller parts. The threshold level for calculation of an 

image binary matrix used for contouring was chosen for 50. 

To be further processed, the detected object had to be 

greater than 500 px, what corresponds to the size of human 

head recorded from distance of 6 m. 

The threshold of valid detection counter depends on the 

sampling rate in terms of Frame Per Seconds (FPS), and was 

selected analyticity. Since the maximum latency required by 

the users and stakeholders was 0.2 s, then to classify a 

detection as valid the counter needs to be more than 50 % of 

all possible detection in a considered period of time. 

Therefore, the value of threshold (NVD within 0.2 s) time, 

which is triggered by the first counting, could be calculated 

using the following formula 

 0.2 / 2.VDN FPS    (1) 

If the estimated sampling rate is equal to 10 FPS, then the 

object had to be identified at least twice within 0.2 s to 

trigger any action of the system. The FPS rate may vary due 

to CPU overload or temperature change inside the module. 

Therefore, the current FPS value of each sensing/detection 

module is estimated and sent to the server for each 1 min 

interval.  

A need for background image update does not depend on 

the latency request. The invalid detection counter has been 

selected analytically as 30 false detections within 60 s 

triggered by the first false detection. 

The tree identification algorithms, Hog, Viola-Jones, and 

Yolo have been selected for testing. These state-of-the-art 

algorithms have been examined and compared in terms of 

the detection efficiency, false positive rate, maximum 

latency measured as a delay from an instant of object 

detection to its identification, and computational complexity. 

For this purpose, the 120 s test was done at the same light 

conditions and with the same image resolution of 

1360 px768 px. One person walked with normal speed with 

random path forward and backward in the room at the 

distance between 0.5 m and about 4.0 m was monitored.  

The detection efficiency was calculated as a ratio of a 

number of valid frames - correctly identified - to the number 

of all frames. The false positive (FP) is an identification of a 

non-person object as a person, and the false positive rate 

(FPR) is calculated as the number of false positive 
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identifications related to the number of false identifications, 

which is the sum of numbers of false positive identifications 

and true negative (TN) identifications 

 .R

FP
FP

FT TN



 (2) 

The illustrative examples of false detection are presented 

in Fig. 8. The latency was measured as the delay between the 

detected appearance of the object in the zone and its 

identification by decision-making system. Computational 

complexity is expressed in terms of sapling rate measure as 

FPS. Table II summarizes the test results. 

 
Fig. 8.  Example detection of a sensing/detection module. 

TABLE II. COMPARISION OF THE IDENTIFICATON ALGORITHM. 

Algorithm FPR 
Detection 

efficiency 

Maximum 

Latency [ms] 
FPS 

HoG 0.79 70 % 201 11 

Viola Jones 0.87 77 % 191 11 

YOLO v3 0 99 % 151 10 

 

Overall, the Yolo v3 outperforms other algorithms in 

terms of detection efficiency, false positive rate, and 

maximum latency. The FPS rate of all three algorithms are 

very similar and met the user’s requirement. Therefore, the 

YOLO v3 algorithm was implemented in the final version of 

the prototype, which was validated, and it is described in the 

following chapter. 

To select a suitable camera, an impact of the image 

resolution on the system latency and FPS was estimated. A 

5 min test with one person moving was done. The results are 

presented in Table III. They show that user’s requirements 

of latency to be less than 200 ms and computation rate 

higher than 10 FPS are met by a HD camera.  

TABLE III. IMPACT OF THE RESOLUTION ON THE COMPUTATION 

LATENCY AND FPS. 

Resolution [pxpx] FPS Latency [ms] 

VGA 640480 30 101 

SVGA 800600 30 102 

WXGA 1296768 16 143 

HD 1360768 12 151 

HD+ 1600900 10 243 

FHD 19201040 5 311 

VI. RESULTS AND DISCUSSION 

The system validation scenario concerns assessments of 

the following system features: (i) ability of multi-detection, 

(ii) detection reliability, (iii) latency, (iii) FPS performance, 

and (iv) real-time performance. During the validation test, 

from one to three persons walked into the detection area 

with typical speed and with random paths forward and 

backward at the distance from the robot between 0.5 m and 

about 4.0 m. The test was performed on a single 

sensing/detection module. The light condition and the 

obstacles in background varied during the test. The 1 min 

test was performed when the sensing/detection module 

captured 601 images. An example of the test frame is 

presented in the Fig. 8, where in addition to the valid 

detections of people, some invalid detections are also 

visible. However, the selected YOLO algorithm managed to 

identify them as invalid.  

From the test results, one can conclude that simultaneous 

detection of several objects present on images is possible, 

and even filtering of invalid detections is possible in real-

time. 

The test proves that the safety system fulfils stakeholders’ 

requirements in terms of detection reliability, latency, 

computation capacity, and real-time performance request. 

The calculated sampling rate was 10 FPS. The maximum 

latency defined as a delay between the instant when the 

object was detected, and its first identification was measured 

as 161 ms. 

The measured detection efficiency defined as a ratio of a 

number of valid frames - correctly identified - to the number 

of all frames was 99 %. Only for 15 cases (0.73 %) of over 

2060 detected objects, the system combined two persons 

into one frame. In 9 % of all the cases, the image 

preprocessing algorithms split persons’ body into parts. 

However, in all these cases, YOLO was still able to correctly 

identify the human. 

Another test was dedicated to estimate the accuracy of the 

localization measurement of detected object. The system was 

tested in the laboratory of area of 160 m2 with the lighting 

condition of 500 lux. One human at a time walked into the 

observation area and approached the points marked on the 

ground as shown in Fig 9. The marked points were 

distributed within three different angle ranges (10 °÷15 °, 

30 °÷35 °, and 45 °÷50 °) and placed in four distances from 

the system (100 cm, 220 cm, 350 cm, and 470 cm). The 

system was tested on 30 different people, and over 300 

localizations were measured. Test results are presented in 

the Table IV. 

TABLE IV. IMPACT OF THE RESOLUTION ON THE COMPUTATION 

LATENCY AND FPS. 

Distance 

[cm] 

Mean 

[cm] 

Uncertainty 

maximum [cm] 

Uncertainty 

minimum [cm] 

SD 

[cm] 

100 -2.4 3 -8 2.6 

220 10.6 34 -6 10.5 

330 -1.2 59 -65 25.5 

470 -14.3 94 -95 49.5 

 

For different distances, the measurement uncertainty 

varies from 3 % up to 20 %, the mean value of the 

localization uncertainty is less than 6 %. The Standard 

Deviation (SD) of the measurement uncertainty at different 
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distances varies from 3 % to 11 %. Due to the used valid 

detection counter, at least two valid detections and distance 

measurements are done before sending a request for the co-

bot action. Therefore, the uncertainty of distance estimation 

of the detected object is a half of a single measurement. 

Table IV summarizes the test results. 

 
Fig. 9. Configuration of the marker points during the test. 

VII. CONCLUSIONS AND FUTURE WORK 

This article shows an opportunity to design the cost-

effective reliable real-time safety system of co-bot, which is 

able to detect, identify, and localize human multi-object 

approaching the co-bot operational zone, and then providing 

a decision about a suitable action of the co-bot control 

system.  

The systematic developing approach of User-Driven-

Design (UDD) methodology facilitated a developing of the 

system, which met all requirements and constrains defined 

by the future users and stakeholders.  

The system modular construction embedded into 

distributed computing paradigm based on the shelf-

components ensures the high detection efficiency. Moreover, 

the modularity of the system, which included distributed 

computing, made it useful even in demanding industrial 

environment. 

The division of observation area into three zones ensures 

system high effectiveness without compromising the 

productiveness of co-bot.  

Conducted tests show that for the designed safety system, 

YOLO v3, the ML algorithm, performs best for person 

identification. The person detection efficiency achieved by 

the algorithm reached 99 %. In demanding industrial 

environment with many obstacles, less than 1 % of 

detections combined two persons in one frame, and in 9 % 

of cases, the detection module split on the person image in 

parts. Nevertheless, the YOLO algorithm managed to 

identify the human in all disturbed cases. 

The achieved detection and localization range of the 

safety system is 5 m. The system works on various light 

conditions and on changeable background. The calculated 

FPS rate for the used HD camera is at least 10 FPS, which 

fulfils the real-time performance request without 

compromising the detection efficiency and robustness. The 

latency measured as a delay between detection of object 

appearance in the detection area to its identification by the 

system does not exceed 0.2 s. The localization uncertainty at 

the maximum distance of 4 m does not exceed 10 %, which 

ensures action timing if a person would approach the co-bot 

operational zone. 

The proposed safety system was implemented as an 

integrated part of the designed co-bot. However, it may be 

also used as a standalone system for every and each robot, 

manipulator or even a mobile platform [55]. 

In the future, to enhance the system performance in terms 

of used resolution, latency and FPS, other microcontrollers 

like NVIDIA Jetson Nano or Jetson TX2 with on board 

CUDA could be tested [56]. Their better computational 

capabilities shall help to extend the system applicability. 

The plans for system enhancement also include full 

tracking of a person and taking action only when the person 

is actually heading to the co-bot operational zone. 

Further system development assumes a use of advanced 

AI in decision-making system, such as DNN or decision 

trees. 
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