
ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 26, NO. 1, 2020

1Abstract—This paper presents a novel object tracking

framework for interest point based feature extracting

algorithms. The proposed framework uses the feature

extracting algorithm without making any changes and it relies

on outlier detection, object modelling, and object tracking. At

first, the keypoints are extracted by using a feature extraction

algorithm. Then, incorrect keypoint matches are detected by

the DBScan algorithm. The second step of our tracking

framework is object modelling. The object model is defined as a

bounding box. The box model has six points and each of these

points has its own Gaussian model. Finally, the Gaussian model

is performed for object tracking. In object tracking, the old five

values are retained to detect incorrect position information.

Thus, while the object movements are softened, the instant

deviations are eliminated also. Our interest point based object

tracking framework (IPBOT) works with any interest point

based feature extracting algorithm. Thus, a new algorithm can

be added to the object tracking framework with a short

integration process. The experiment results show that the

proposed tracker significantly improves the success rate of the

object tracking.

 Index Terms—Feature extraction; Object tracking; SIFT;

SURF.

I. INTRODUCTION

Every object tracking application requires an object

detection method [1]. There are two common models for

object detection [2]. The first one is to use single frame

information. The second is to use combined information,

which is computed from multiple frames [2]. There are a lot

of methods published in the literature for object detection.

These methods are classified into four main categories [2],

[3]:

 Point detectors: Speeded-Up Robust Features (SURF)

[4], Scale-Invariant Feature Transform (SIFT) [5], and

Kanade-Lucas-Tomasi (KLT) detectors [6];

 Segmentation: active contours [7], [8], graph-cut [9],

and mean shift [10];

 Background modelling: Mixture of Gaussian [11] and

Dynamic Background model [12];

Manuscript received 8 March, 2019; accepted 20 October, 2019.

This research was funded by a grant (No. MF16.61) from the Firat

University Scientific Research Projects’ Unit.

 Supervised classification: Support Vector Machine [13],

Neural Networks [14], and Deep Learning [15].

In 2004, the Scale Invariant Feature Transform (SIFT)

was published by Lowe to find distinctive invariant features

[5]. The SIFT algorithm basically consists of 3 stages. These

are keypoint detection, descriptor calculation, and feature

matching. During the descriptor establishing stage, SIFT

uses a 128-dimensional vector to identify the keypoint. This

high dimensional vector causes performance issues and

makes the SIFT algorithm run slowly [16]. For solving this

problem, the Principal Component Analysis based SIFT

(PCA-SIFT) algorithm was proposed in 2004 by Ke and

Sukthankar [17]. In PCA-SIFT analysis, the Principal

Component Analysis method is used for each keypoint

definition. Thus, typically, in order to decrease the high

dimensional requirement in the SIFT algorithm, PCA-SIFT

is applied. PCA-SIFT is faster than SIFT, but SIFT is more

distinctive than PCA-SIFT [18]. The Speed-Up Robust

Feature Detector (SURF) developed by Bay is, basically,

similar to the SIFT algorithm, but each step of the algorithm

is improved [4].

SIFT algorithm and its variants are used in the object

tracking applications also. With the algorithm developed by

Zhou [19], SIFT keypoints are integrated with the mean shift

algorithm. In the proposed approach, the similarity criterion

between two neighboring frames is determined by color

information and SIFT features [19]. Miao proposed a SURF

based object tracking application [20]. In that study, a search

space is incrementally estimated for increasing the

reusability of the tracked interest point. For computing

descriptor, they used online boosting and a classifier based

descriptor.

In this paper, we developed an object tracking framework

based on for feature extraction algorithms, such as SIFT and

its variants.

II. LITERATURE REVIEW

A. SIFT Algorithm

SIFT algorithm achieves robust results against scaling and

rotation invariance. However, it requires a high computing

capacity. For this reason, SIFT algorithm cannot achieve

successful results in real-time systems [5], [21].

A New Object Tracking Framework for Interest

Point Based Feature Extraction Algorithms

Zafer Guler1, *, Ahmet Cinar2, Erdal Ozbay2

1Department of Computer Engineering, Sivas University of Science and Technology

58000 Sivas, Turkey
2Department of Computer Engineering, Firat University,

23200 Elazig, Turkey

zaferguler@sivas.edu.tr

http://dx.doi.org/10.5755/j01.eie.26.1.25311

63

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 26, NO. 1, 2020

The first step to detect the corresponding points is a

convolution operation. The convolution operation is

performed between Gaussian filter with different scales of

views, and the difference of Gaussian with adjacent images

is computed. This process is shown in Fig. 1. The

corresponding point, called the keypoint, is defined as the

local minimum and maximum between the difference of

Gaussian (DOG) scales. Each pixel in the DOG image is

compared to the neighbours in the same and adjacent scales.

If the pixel is local minimum or maximum, this point is

selected as the candidate point [19]. For each candidate

point, the four steps are performed as follows.

—

—

—

—

—

—

—

—

Scale

(next octave)

Scale

(first

octave)

Gaussian
Difference of

Gaussian (DOG)

Fig. 1. Computation of the difference of Gaussian [5].

Stage 1. Scale space extreme detection: The scale space is

formed by applying the Gaussian filter of images in different

scales, and it is defined as the function (, ,)L x y . This

function is calculated from the convolution of Gaussian

(, ,)G x y and input image (,)I x y [5]. To increase the

application speed, SIFT uses the DOG instead of Gaussian.

Convolved image (, ,)D x y , can be computed with (1)

 (, ,) ((, ,) (, ,)) * (,),D x y G x y k G x y I x y (1)

where k is a constant factor and * is a convolution

operation.

After these operations, candidate interest points are

selected as the minimum and maximum of DOG [5].

Stage 2. Update location: The location information of

each candidate is updated by the color values using the

neighbouring pixels [5].

Stage 3. Keypoint refinement and filtering: DOG

operation gives a strong response along the edge. Therefore,

for stability, low contrast candidates along the edge are

eliminated [5].

Stage 4. Keypoint descriptor calculation: Gradients are

calculated for each of the remaining interesting points [5].

These gradients are very useful to find the local change in

shape distortion and illumination [19].

The SIFT algorithm can detect a greater number of

interest points. It is more resident to image deformations

also [1]. For real time application, SIFT is comparatively

slow. For that reason, SURF algorithm was introduced by

Bay, Tuytelaars, and Van Gool [4]. SURF algorithm was

inspired by the SIFT algorithm and can be used for object

recognition, classification, and registration [16].

B. SURF Algorithm

SIFT and SURF algorithms have similar steps. However,

the implementation details in each step are different. The

main difference is that SURF algorithm is relatively more

efficient than SIFT algorithm [1]. Furthermore, it is suitable

for real time applications. The steps required to find the

point of interest in SURF algorithm are given in [22].

1. Calculation of image integral. The purpose of

calculating the image integral is to facilitate the box filter.

Image integral is calculated by summing the pixel

intensities cumulatively [22].

2. Box filtering. A box filter is an effective way of

approaching a Hessian Matrix for a given pixel value. In

SURF algorithm, Hessian calculation is used for the

computing of the interest point [22].

3. Scale space generation. With this process, SURF

algorithm achieves scale invariance. The same operation

is performed in SIFT algorithm, but the calculation in the

SURF algorithm is partially different [16]. In SURF

algorithm, each filter is applied to the same integral

image. This procedure ensures that DOG creation process

is achieved using fewer computational cost [22].

4. Interest point searching. When addressing a single

pixel used in the search process, a 3x3x3 neighbourhood

is used to determine, whether this pixel is or not a local

maximum. If the central pixel in the search area has the

highest intensity value, it is marked as a local maximum.

If the central pixel value is greater than the threshold and

it is a local maximum, then this pixel is marked as the

interest point [22].

5. After each step mentioned above, it is necessary to

define a descriptor for each interest point. The steps used

to create a descriptor in SURF algorithm are given below.

6. Orientation. The main purpose of the orientation step is

to provide a directional value for each feature. The

orientation value of the features is calculated by the use of

the surrounding area of the interest point. Thus, the

rotation invariance in SURF algorithm is provided.

7. Calculation of the descriptor. The descriptor describes

the properties of the features, which surround the interest

point. This region is detected with the Hessian-based

detector. The next action is to define the characteristic

that describes this region. This definition can be identified

by drawing a square around the interest point and showing

the orientation [22].

C. Other Feature Extraction Algorithms

In addition to SIFT and SURF algorithms, there are many

other feature extraction algorithms in the literature. Some of

these are PCA-SIFT [17], Colored SIFT (CSIFT) [23,] and

Affine-SIFT (ASIFT) [24] algorithms. When these

algorithms are examined, there is no algorithm that works

successfully in every case. SIFT and its variants can be

64

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 26, NO. 1, 2020

examined under five different conditions. These conditions

are scaling, rotating, illumination, blur, and affine invariance

[16]. SIFT achieves successful results in scale and rotation

invariance. In other cases, the average results are obtained.

The CSIFT algorithm is more successful than SIFT in blur

invariance. In addition, it is as successful as SIFT in scale

and rotation invariance, but the runtime is slower than of the

SIFT. The ASIFT algorithm achieves successful results in

affine invariance. In other cases, average results are obtained

and the runtime is slower than of the other algorithms also.

The PCA-SIFT algorithm generally gives above average

results in scaling, rotation, illumination, and blur invariance.

While in the others, it gives average results. Finally, the

average results are obtained with the SURF algorithm for

feature extraction, but it is the best of these algorithms in

terms of runtime [16].

As can be seen, each algorithm has advantages and

disadvantages. In every case, there is no algorithm that

works with optimum accuracy and performance. Feature

extraction algorithms can determine, whether the object

exists in the next image/frame, and specify, whether an

object exists in an image, unless the object view is

completely changed. For this reason, they are frequently

preferred in object tracking applications.

One of the biggest problems in object tracking

applications is to detect that the object is the same object

when the object disappears and appears again. Object

extraction algorithms are one of the most common

algorithms used for this purpose. In [16], Wu compared

SIFT and its variants. When we look at SIFT and its variants

in terms of runtime, it is seen that the fastest running

algorithm is SURF. In addition, the SIFT algorithm is the

second fastest algorithm in terms of operating speed. Since

the runtime of the algorithm is very important in object

tracking applications, in this study, we compared these two

algorithms and the Graphics Processing Unit (GPU) version

of SURF algorithm (GPU-SURF) with the proposed

algorithm.

We used OpenCV Compute Unified Device Architecture

(CUDA) implementation to calculate SURF features. The

GPU-SURF algorithm produces similar results with the

SURF algorithm. In cases, where the search space is too

small, the GPU-SURF algorithm can produce incorrect

results. Therefore, in this case, the keypoint extraction by the

SURF algorithm is performed. This situation occurred only

when calculating some object keypoints. As the video frame

size is 640x480, the GPU-SURF algorithm is executed for

keypoint extraction from video frames. In case the search

space is small, the operating speeds of SURF and GPU-

SURF algorithms are similar.

III. PROPOSED ALGORITHM

This section provides detailed information about the

interest point based object tracking framework (IPBOT).

The flow chart of the IPBOT is given in Fig. 2. In our object

tracking application, we did not interfere the structure of the

feature extraction algorithm and the matching process.

Instead, the developed algorithm offers improvements on

matching features. It is possible to divide the improvements

into three stages. These are outlier detection, object

modelling, and object tracking operations.

A. Outlier Detection with DBSCAN Algorithm

In IPBOT, the feature matching process is obtained by the

feature extraction algorithm. The accuracy of the matches

has a critical importance for the correct identification of the

object position. Yet there is no such an algorithm that you

have a 100 % success rate. To do this, it is very important to

detect the wrong matching points correctly.

We are not involved in feature matching in this

application. Instead, this study is focused on detecting

incorrect matching. When the matchings are examined, it is

observed that, generally, there are more correct than

incorrect matchings. Besides, it is indicated that incorrect

matchings are at points away from the object. Therefore, we

can reduce the problem to find discrete points in a

coordinate system.

Video Sequences Feature Detection

(SIFT, SURF, etc.)
Feature Matching

Delete Outlier

Bounding Box

Calculation

Bounding Box

Estimation

Update Gaussian

Parameters
Gaussian Box

Good Matches

> Threshold

Yes

No

Fig. 2. The structure of the IPBOT algorithm.

65

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 26, NO. 1, 2020

DBScan algorithm [25], which is a statistical

classification method, is used for the detection of discrete

points. The DBScan algorithm is a density-based clustering

algorithm. It can easily classify the clusters with different

shape and different number of elements. It is also simple to

use and implement. The structure of the DBScan algorithm

is given below and shown in Fig. 3 [25]:

1. Starts from a desired point in the dataset (red point);

2. The distance between this point and other points is

calculated. If the calculated distance is less than the

epsilon value (eps), it is included in the cluster (blue

points);

3. In this way, all detected points are considered to be

central, and new cluster elements are detected iteratively.

For this purpose, the Depth First Search approach is used;

4. Clustering process is executed for all points in the data

set iteratively and finds all other groups (green points);

5. If the set is less than the minimum number of elements

(MinPts), it is marked as noise (remaining black points).

In the DBScan algorithm, the most important parameters

are the eps and MinPts parameters. Normally, eps is

obtained by calculating the mean of the distance between

points. However, in this study, we preferred to use a fixed

value. The general algorithm of outlier detection with

DBScan is given in Algorithm 1 and an example

demonstration of the DBScan on interest points is given in

Fig. 4. Algorithm 1 shows that the MinPts parameter is

calculated according to the number of cluster elements.

Moreover, as can be seen in Fig. 4, number of 5 matching

matches (red features) are marked as incorrect and these

matches are excluded from calculation. As a result, the

accuracy of object detection significantly increased.

Algorithm 1. Outlier Detection with DBSCAN.

Inputs: kp= keypoints, mt= matches

Outputs: kp= kp results mt: mt results

1: for all keypoints in dataset

2: read next_point in keypoints

3: if (next_point not visited)

4: DFS (next_point)

5: endIf

5: endFor

6:

7: max = find max element set

8: if (1<max<6) minPts = 1

9: else if (6≤max<12) minPts = 2

10: else if (12≤max<18) minPts = 3

11: else if (18≤max<24) minPts = 4

12: else minPts = 5

13: Delete sets that do not have enough

elements

14: Save remaining keypoints and matches

Eps Eps

Eps

Eps

Noise

Set-1

Set-2

Fig. 3. The structure of the DBScan algorithm.

(a)

(b)

Fig. 4. Example demonstration of the DBScan algorithm on SIFT interest

point: (a) Object keypoints extracted with SIFT shown in cyan color; (b)

Final object keypoints after DBScan algorithm shown in green color.

Incorrect object keypoint shown in red color.

B. Object Modelling

After clearing incorrect matching, the position of the

object is estimated approximately. To estimate the object

position, a homography calculation is made between the

object and the video frame. A homography is a 3x3 matrix

transformation that maps the points in an image to the

corresponding points in the other image [26]. However, at

least four matching points are required to calculate

homography accurately. For homography calculation, a

random Sample Consensus algorithm (RANSAC) is used

[27]. The RANSAC algorithm is an algorithm developed by

Fischler and Bolles in 1981. It ensures a robust fitting of

models. In the experiments, successful results can be

obtained, in case of outliers. However, we chose to apply at

least 10 matching points in this application. Because, if there

are incorrect matches and the number of matches is low, the

object position cannot be found successfully.

In this study, the object is defined by box representation.

As shown in Fig. 5, there are six values in our object model.

As a result of calculating matching keypoints, kpx and
kpy

values are obtained, and by calculating homography, ,x ,y

,w and h values are achieved.

The Gaussian model is used for these six values. Every

value has its own Gaussian model. First, we initialize object

models using the recent history of t object positions. Then,

66

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 26, NO. 1, 2020

the probability function is calculated at a given value at time

t as follows

 ,() (, ,),t i t t i iP X w n X (2)

where tX object modelling value in frame ;t ,i tw is the

weight of the distribution in frame ;t i is the mean of the

distribution; i : The standard deviation of the distribution.

Here (, ,)t i in X is Gaussian probability density function

and calculated as in (3)

2

22
1

(, ,) ,
(2)

tX

t i in X e

 (3)

where is the standard deviation. After initialization the all

model, we should separate the model as bounding box

estimation (BBE) or bounding box calculation (BBC). ,x

,y ,w and h are Gaussian models used for the selection for

the next algorithm. The algorithm selection process is also

given in (4)

1

1 ,

0 ,

g
k

k

if w T
n

otherwise

 (4)

where g is the total number of Gaussian model and T is the

threshold value. Here, it is checked, whether the Gaussian

value is greater than the T threshold. If 2n , the BBC is

performed. The BBC operation is the process of generating

values, which have not reached the threshold value by

applying Gaussian model. Thus, four values are obtained for

the object model. If 2n , the BBE is performed. The kpx

and
kpy values are controlled with (4). If both exceeds the

threshold value, the center of the object is determined by the

values of kpx and
kpy . If one of them does not exceed the

threshold value, the Gaussian models are used for both of

them to determine the center of the object.

w

h

(,)x y

(,)kp kpx y

Fig. 5. Our 6-point object model.

Finally, the w and h values of the object are calculated

according to the Gaussian distribution and the x and y

values of the object are calculated using the center of the

object as in (5) and (6):

 ,
kp

kp i
o

xo
x xi w

w
 (5)

 .
kp

kp i
o

yo
y yi h

h
 (6)

(5) and (6) provide the equivalence (7)

 1 1 1 1

2 2 2 2

.
o i o i

o i o i

w w h h

w w h h
 (7)

All parameters of (7) are shown in Fig. 6.

Initial Object

(,)kp kpx y
1

ow
2

ow
1

oh

2
oh

Object in frame

1
iw

2
iw

1
ih

2
ih

t

(,)kp kpxo yo

iw

ih

ow

oh

Scaling

 (a) (b)

Fig. 6. Object model parameters for object and video frame.

After all these operations are completed, there are now

two possibilities left, whether the object is found or not. If

the object is found successfully, the next step is the object

tracking. If not, it is taken to the next frame and the

operations start from the beginning.

C. Object Tracking

In this section, Gaussian model is applied to the object

tracking. Our interest point based object tracking may

incorrectly predict the position of the object in some instant

frames. This condition is usually temporary, and, in

subsequent frames, this condition usually improves.

Although this error is largely addressed by the calculations

given in Section III-A, some frames may still be inaccurate.

Nowadays, videos usually have a value of 30 fps. This

means that the time between two frames is about 0.03

seconds. Based on this theory, Gaussian smoothing process

is applied by using the object position in last 5 frames,

because the last object positions are important in this

process. However, in case of a mismatch in the last object

position, this error is softened with Gaussian. Also, they can

also adapt to abrupt the motion of the object. As a result of

this study, the object tracking accuracy is increased between

2 % to 10 %.

IV. EXPERIMENTAL RESULTS

In this section, we present the experimental results. All

experiments are performed on a machine equipped with an

67

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 26, NO. 1, 2020

Intel Core i7-3770 CPU at 8GB RAM and a GeForce GTX

660 Ti GPU. The GPU used in this study includes 7

streaming multiprocessors (SM) and each SM has 192

CUDA processors. The global memory size of the GPU is

2 GB and it is accessed via the GDDR5 interface. Double

precision floating-point arithmetic is supported on the GPU

architecture.

For object tracking experiments, we use Bonn Benchmark

on Tracking (BoBoT) Dataset [28]. The BoBoT dataset

includes 12 short video sequences provided an AVI format

with 320x240 pixels at 25 fps. The number of frames on

video in the BoBoT dataset ranges from 305 to 1308, and

the ground truth data are given for each frame also. Due to

the low video resolution, in some cases, the object can be

very small. In this study, we convert the video resolution to

640x480. The first frames of the videos in the dataset and

the targeted objects to be tracked are given in Fig. 7.

Fig. 7. First frames of BoBoT video dataset.

In the BoBoT dataset, different features are tested on each

video sequences. For example, on the first video sequence,

its aim is to track a Football Ball. In this video sequence, an

abrupt motion and camera motion are tested. On the third

video sequence, scaling and appearance changes are tested,

as well as abrupt motion and moving camera. Table I shows

the difficulties for each video sequence in the BoBoT dataset

[29]. The features tested on each video sequence are

indicated by the symbol “+” in Table I. Other untested

features are indicated by the symbol “-”. In order to evaluate

the performance of the developed application, the first frame

is taken from the video and the object is extracted with the

ground truth. This extracted image is selected as a base

image and the remaining frames are used for testing.

First 9 videos in the dataset were tested. Our tracker was

integrated with SIFT, SURF, and GPU-SURF algorithms,

and we compared the traditional methods with our tracker.

As a result of the experiments, similar results were obtained

on SURF and GPU-SURF algorithms. The only difference

between two algorithms is that, the GPU-SURF algorithm

works faster.

TABLE I. BOBOT DATASET VIDEO SEQUENCE AND THEIR

DIFFICULTIES FOR OBJECT TRACKING [29] (D1: SCALE, D2:

OCCLUSION, D3: CAMERA MOTION, D4: ABRUPT MOTION, D5:

SIMILAR APPEARANCE, D6: SCENE CLUTTER, D7: MOTION

DIRECTION, D8: APPEARANCE CHANGES, D9: DISAPPEARANCE,

D10: ILLUMINATION).

Sequence No. D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

1 - - + + - - + + - -

2 + - + - - + - + - -

3 + - + + - - + + - -

4 - - + - - - - + - -

5 - + + - - - - - - -

6 - + + - + - - + + -

7 - - + - - - - + - -

8 - - - - - - - + - +

9 - + + - + - - + + -

10 - + + - - - - + + -

11 + - + - + - - + - -

12 + - + - - - - + - -

We evaluated our IPBOT tracker by comparing it with

SIFT and SURF algorithms. Comparison results are shown

in Fig. 8. In the figure, a video stream is given on each line.

Also, the video no is shown on the left side of the figure.

The results of the tracking algorithms on the figure are

shown with a different color for each algorithm. The

proposed IPBOT algorithm is indicated by green color,

SIFT, SURF, and ground truth are indicated by red, blue,

and turquoise colours, respectively. Our IPBOT tracker was

tested with different challenges and has generally achieved

satisfactory results. The results showed that the IPBOT

algorithm provides more successful results than the other

algorithms. In some cases, the standard SIFT and SURF

algorithms cannot produce results for object tracking. For

example, in the second video sequence, the SURF algorithm

generally does not produce results. Similarly, both SIFT and

SURF algorithms cannot generate adequate results for the

6th video sequence.

As we mentioned in the previous section, SIFT algorithm

extracts more keypoint than the SURF and GPU-SURF

algorithms. For this reason, the object tracking framework is

more successful with the SIFT algorithm. In order to

measure the success rate, the average of Sensitivity (Se) and

Precision (Pr) values was used. Their equation is given in (8)

 .
TP TP

Se Pr
TP FN TP FP

 (8)

In these equations, the True Positive (TP) value indicates

the correctly estimated object point number, while the False

Positive (FP) and False Negative (FN) values indicate the

number of incorrect object points and missed number of

object points that cannot be detected, respectively.

The developed algorithm is suitable for SIFT and its

variants. They fail when the object view changes

dramatically. As seen in Table II, the success rate of SIFT

algorithm is low, because the object view changed at

sequence numbers 1, 4, and 7. The developed algorithm

provided great improvements in these type of videos. As

68

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 26, NO. 1, 2020

seen in the Table II, the success rate of object tracking was

greatly increased. Only in the 5th and 8th video sequence,

there was a slight increase in success rate. This is because

the SIFT and its variants were already successful in these

videos.

Fig. 8. Tracking results for video sequence.

As a result, the success rate increased from 56.88 % to

82.2 % for the SIFT, from 51.05 % to 77.25 % for SURF,

and from 48.61 % to 78.11 % for GPU-SURF. The success

rate of the SURF and GPU-SURF algorithms is similar, but

GPU-SURF is much faster in terms of runtime than the other

two algorithms. The runtime of all algorithms based on the

frame per second (fps) are given in Table III. In addition, the

percentage of developments is given in parentheses. As seen

in Table III, the slowest algorithm is SIFT algorithm, while

the fastest algorithm is the GPU-SURF algorithm. The

IPBOT algorithm is integrated into SIFT, SURF and GPU-

SURF algorithms. In addition, the GPU-SURF + IPBOT

algorithm achieved an average of 39.15 fps. This suggests

that it may be appropriate for a real-time application.

69

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 26, NO. 1, 2020

TABLE II. COMPARATIVE RESULTS OF SUCCESS RATE WITH

SIFT, SURF, AND GPU-SURF ALGORITHMS. THE PERCENTAGE OF

DEVELOPMENTS IS GIVEN IN PARENTHESES.

Sequence

No.
SIFT SURF

GPU-

SURF

SIFT +

IPBOT

SURF +

IPBOT

GPU-SURF

+ IPBOT

1 33.5 24.0 24.7
73.2

(% 118.4)

60.6

(% 152.4)

63.1

(% 155.7)

2 46.2 39.9 33.9
85.5

(% 85.0)

86.3

(% 116.5)

82.9

(% 144.3)

3 76.3 71.2 68.0
91.6

(% 20.2)

87.7

(% 23.1)

85.8

(% 26.1)

4 45.9 38.3 37.8
81.1

(% 76.8)

65.9

(% 71.9)

69.5

(% 83.9)

5 93.1 91.1 90.6
93.8

(% 0.7)

93.7

(% 2.8)

92.9

(% 2.6)

6 42.4 42.8 42.9
67.2

(% 58.7)

66.7

(% 55.8)

71.6

(% 66.8)

7 39.4 32.5 32.1
81.7

(% 107.1)

77.3

(% 138.1)

77.7

(% 141.9)

8 87.7 79.3 71.0
97.8

(% 11.4)

93.7

(% 18.1)

93.5

(% 31.7)

9 47.3 40.3 36.5
67.8

(% 43.3)

63.5

(% 57.6)

66.0

(% 81.0)

Average 56.9 51.1 48.6
82.2

(% 44.5)

77.3

(% 51.3)

78.1

(% 60.7)

TABLE III. COMPARATIVE RESULTS OF RUNTIME (FPS) WITH

SIFT, SURF, AND GPU-SURF ALGORITHMS. THE PERCENTAGE OF

DEVELOPMENTS IS GIVEN IN PARENTHESES.

Sequence

No.
SIFT SURF

GPU-

SURF

SIFT +

IPBOT

SURF +

IPBOT

GPU-SURF

+ IPBOT

1 9.1 18.8 48.9
9.0

(%-0.2)

18.4

(%-2.4)

48.1

(%-1.5)

2 6.3 12.1 37.8
6.3

(%-0.7)

11.8

(%-1.9)

37.3

(%-1.4)

3 7.7 14.2 42.7
7.7

(%-0.2)

14.2

(%-0.6)

41.3

(%-3.3)

4 4.6 9.9 27.0
4.6

(%-1.2)

10.0

(%0.9)

29.1

(%-7.8)

5 6.9 13.2 37.6
6.8

(%-1.1)

13.2

(%-0.0)

36.5

(%-2.9)

6 7.4 12.7 34.4
7.2

(%-1.7)

12.8

(%-0.8)

36.3

(%-5.5)

7 8.8 18.4 51.7
8.6

(%-2.4)

18.2

(%-1.5)

51.0

(%-1.4)

8 8.0 14.8 39.2
7.9

(%-1.2)

14.8

(%-0.1)

41.4

(%-5.6)

9 4.5 10.9 29.8
4.5

(%-0.3)

11.0

(%-0.8)

31.4

(%-5.2)

Average 7.0 13.9 38.8
7.0

(%-0.8)

13.8

(%-0.6)

39.2

(%-0.9)

V. CONCLUSIONS

Our main goal is to create an object tracking framework

by getting rid of the incorrect matching keypoints generated

by the feature extraction algorithms. The feature extraction

algorithms can extract many properties of the object and use

these properties successfully. With this presented

framework, all these algorithms can be used for object

tracking application.

For a feature extraction algorithm, after matches the

properties, outlier detection, object modelling, and object

tracking are performed. Outlier detection is performed using

the DBScan algorithm. The DBScan algorithm minimizes

keypoints mismatches that occur as a result of keypoints

matching between the object and the video frame. Thus,

even when the number of matching keypoints is small, the

object position is successfully detected. Another

improvement is performed at the object modelling stage. The

object structure is modelled using 6 points, and the Gaussian

model is used for each point. Normally, object detection can

be done via keypoints, but the number and accuracy of the

matching keypoints is important for successful object

detection. If there are few keypoints matches, it must be

error-free, but only, if there are many keypoints matching,

the incorrect points may be accepted. Our proposed method

estimates the object position accurately even if there are few

and incorrect matching keypoints. This progress is possible

with the 6-point Gaussian object model.

The IPBOT algorithm is adapted to the traditional SIFT,

SURF, and GPU-SURF algorithms and the adapted IPBOT

methods are compared with the traditional algorithms.

According to the results, the runtime of the IPBOT

algorithm is approximately the same as of the traditional

algorithms. As seen in the experiments, there is no

significant runtime difference between the traditional

algorithms and the IPBOT algorithm. Furthermore, IPBOT

provides to increase the object tracking performance by

about 50 %. In future work, the authors will try to evaluate

this developed algorithm using background model or

supervised classification.

CONFLICTS OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

[1] N. Y. Khan, B. McCane, and G. Wyvill, “SIFT and SURF

performance evaluation against various image deformations on

benchmark dataset”, in Proc. of International Conference on Digital

Image Computing: Techniques and Applications, 2011, pp. 501–506.

DOI: 10.1109/DICTA.2011.90.

[2] A. Yilmaz, O. Javed, and M. Shah, “Object tracking: A survey”,

ACM Computing Surveys, vol. 38, no. 4, pp. 1–45, 2006. DOI:

10.1145/1177352.1177355.

[3] S. A. Mahmoudi, M. Kierzynka, P. Manneback, and K. Kurowski,

“Real-time motion tracking using optical flow on multiple GPUs”,

Bulletin of the Polish Academy of Sciences-Technical Sciences, vol.

62, no. 1, pp. 139–150, 2014. DOI: 10.2478/bpasts-2014-0016.

[4] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust

features (SURF)”, Computer Vision and Image Understanding, vol.

110, no. 3, pp. 346–359, 2008. DOI: 10.1016/j.cviu.2007.09.014.

[5] D. G. Lowe, “Distinctive image features from scale-invariant

keypoints”, International Journal of Computer Vision, vol. 60, no. 2,

pp. 91–110, Nov. 2004. DOI:

10.1023/B:VISI.0000029664.99615.94.

[6] S. Jianbo and C. Tomasi, “Good features to track”, in Proc. of IEEE

Conference on Computer Vision and Pattern Recognition, Seattle,

WA, USA, 1994, pp. 593–600. DOI: 10.1109/CVPR.1994.323794.

[7] V. Caselles, R. Kimmel, and G. Sapiro, “Geodesic active contours”,

International Journal of Computer Vision, vol. 22, no. 1, pp. 61–79,

Feb.–Mar. 1997. DOI: 10.1023/A:1007979827043.

[8] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes - active contour

models”, International Journal of Computer Vision, vol. 1, no. 4, pp.

321–331, 1988. DOI: 10.1007/BF00133570.

[9] J. B. Shi and J. Malik, “Normalized cuts and image segmentation”,

IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 22, no. 8, pp. 888–905, Aug. 2000. DOI: 10.1109/34.868688.

[10] D. Comaniciu and P. Meer, “Mean shift: A robust approach toward

feature space analysis”, IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 24, no. 5, pp. 603–619, May 2002. DOI:

10.1109/34.1000236.

[11] C. Stauffer and W. E. L. Grimson, “Adaptive background mixture

models for real-time tracking”, in Proc. of IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, Fort

Collins, CO, USA, 1999, vol. 2, pp. 246–252. DOI:

10.1109/CVPR.1999.784637.

[12] D. Russell and G. Shaogang, “A highly efficient block-based dynamic

background model”, in Proc. of IEEE Conference on Advanced

70

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 26, NO. 1, 2020

Video and Signal Based Surveillance, Como, Italy, 2005, pp. 417–

422. DOI: 10.1109/AVSS.2005.1577305.

[13] C. P. Papageorgiou, M. Oren, and T. Poggio, “A general framework

for object detection”, in Proc. of 6th International Conference on

Computer Vision, Bombay, India, 1998, pp. 555–562. DOI:

10.1109/ICCV.1998.710772.

[14] H. A. Rowley, S. Baluja, and T. Kanade, “Neural network-based face

detection”, IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 20, no. 1, pp. 23–38, 1998. DOI:

10.1109/34.655647.

[15] D. Ciresan, U. Meier, and J. Schmidhuber, “Multi-column deep

neural networks for image classification”, in Proc. of IEEE

Conference on Computer Vision and Pattern Recognition, RI, USA,

2012. DOI: 10.1109/CVPR.2012.6248110.

[16] J. Wu, Z. M. Cui, V. S. Sheng, P. P. Zhao, D. L. Su, and S. R. Gong,

“A comparative study of SIFT and its variants”, Measurement

Science Review, vol. 13, no. 3, pp. 122–131, 2013. DOI:

10.2478/msr-2013-0021.

[17] K. Yan and R. Sukthankar, “PCA-SIFT: A more distinctive

representation for local image descriptors”, in Proc. of IEEE

Computer Society Conference on Computer Vision and Pattern

Recognition, 2004, vol. 2, pp. 506–513. DOI:

10.1109/CVPR.2004.1315206.

[18] L. Juan and O. Gwon, “A comparison of SIFT, PCA-SIFT and

SURF”, International Journal of Image Processing, vol. 3, no. 4, pp.

143–152, 2009.

[19] H. Y. Zhou, Y. Yuan, and C. M. Shi, “Object tracking using SIFT

features and mean shift”, Computer Vision and Image

Understanding, vol. 113, no. 3, pp. 345–352, 2009. DOI:

10.1016/j.cviu.2008.08.006.

[20] Q. Miao, G. Wang, C. Shi, X. Lin, and Z. Ruan, “A new framework

for on-line object tracking based on SURF”, Pattern Recognition

Letters, vol. 32, no. 13, 2011, pp. 1564–1571. DOI:

10.1016/j.patrec.2011.05.017.

[21] M. Guerrero, “A comparative study of three image matching

algorithms: Sift, Surf, and Fast”, M. S. Thesis, Civil and

Environmental Eng., Utah State Univ., 2011.

[22] S. M. Jurgensen, “The rotated speeded-up robust features algorithm

(R-SURF)”, M. S. Thesis, Electrical Eng., Naval Postgraduate

School, 2014.

[23] A. E. Abdel-Hakim and A. A. Farag, “CSIFT: A SIFT descriptor with

color invariant characteristics”, in Proc. of IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, 2006, vol.

2, pp. 1978–1983. DOI: 10.1109/CVPR.2006.95.

[24] G. Yu and J.-M. Morel, “ASIFT: An algorithm for fully affine

invariant comparison”, Image Processing On Line, pp. 11–38, 2011.

DOI: 10.5201/ipol.2011.my-asift.

[25] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based

algorithm for discovering clusters in large spatial databases with

noise”, in Proc. of Conference on Knowledge Discovery and Data

Mining, Portland, Oregon, pp. 226–231, 1996.

[26] M. Brown and D. G. Lowe, “Automatic panoramic image stitching

using invariant features”, International Journal of Computer Vision,

vol. 74, no. 1, pp. 59–73, 2007. DOI: 10.1007/s11263-006-0002-3.

[27] M. A. Fischler and R. C. Bolles, “Random sample consensus: A

paradigm for model fitting with applications to image analysis and

automated cartography”, Communications of the ACM, vol. 24, no. 6,

pp. 381–395, 1981. DOI: 10.1145/358669.358692.

[28] H. Shao, T. Svoboda, T. Tuytelaars, and L. Van Gool, “HPAT

indexing for fast object/scene recognition based on local appearance”,

in Proc. of 2003 Image and Video Retrieval: Second International

Conference, vol. 2728, pp. 71-80, 2003. DOI: 10.1007/3-540-45113-

7_8.

[29] S. Dubuisson and C. Gonzales, “A survey of datasets for visual

tracking”, Machine Vision and Applications, vol. 27, no. 1, pp. 23–

52, Jan. 2016. DOI: 10.1007/s00138-015-0713-y.

71

