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1Abstract—This paper presents a novel object tracking 

framework for interest point based feature extracting 

algorithms. The proposed framework uses the feature 

extracting algorithm without making any changes and it relies 

on outlier detection, object modelling, and object tracking. At 

first, the keypoints are extracted by using a feature extraction 

algorithm. Then, incorrect keypoint matches are detected by 

the DBScan algorithm. The second step of our tracking 

framework is object modelling. The object model is defined as a 

bounding box. The box model has six points and each of these 

points has its own Gaussian model. Finally, the Gaussian model 

is performed for object tracking. In object tracking, the old five 

values are retained to detect incorrect position information. 

Thus, while the object movements are softened, the instant 

deviations are eliminated also. Our interest point based object 

tracking framework (IPBOT) works with any interest point 

based feature extracting algorithm. Thus, a new algorithm can 

be added to the object tracking framework with a short 

integration process. The experiment results show that the 

proposed tracker significantly improves the success rate of the 

object tracking. 

 
 Index Terms—Feature extraction; Object tracking; SIFT; 

SURF.  

I. INTRODUCTION 

Every object tracking application requires an object 

detection method [1]. There are two common models for 

object detection [2]. The first one is to use single frame 

information. The second is to use combined information, 

which is computed from multiple frames [2]. There are a lot 

of methods published in the literature for object detection. 

These methods are classified into four main categories [2], 

[3]: 

 Point detectors: Speeded-Up Robust Features (SURF) 

[4], Scale-Invariant Feature Transform (SIFT) [5], and 

Kanade-Lucas-Tomasi (KLT) detectors [6]; 

 Segmentation: active contours [7], [8], graph-cut [9], 

and mean shift [10]; 

 Background modelling: Mixture of Gaussian [11] and 

Dynamic Background model [12]; 
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 Supervised classification: Support Vector Machine [13], 

Neural Networks [14], and Deep Learning [15]. 

In 2004, the Scale Invariant Feature Transform (SIFT) 

was published by Lowe to find distinctive invariant features 

[5]. The SIFT algorithm basically consists of 3 stages. These 

are keypoint detection, descriptor calculation, and feature 

matching. During the descriptor establishing stage, SIFT 

uses a 128-dimensional vector to identify the keypoint. This 

high dimensional vector causes performance issues and 

makes the SIFT algorithm run slowly [16]. For solving this 

problem, the Principal Component Analysis based SIFT 

(PCA-SIFT) algorithm was proposed in 2004 by Ke and 

Sukthankar [17]. In PCA-SIFT analysis, the Principal 

Component Analysis method is used for each keypoint 

definition. Thus, typically, in order to decrease the high 

dimensional requirement in the SIFT algorithm, PCA-SIFT 

is applied. PCA-SIFT is faster than SIFT, but SIFT is more 

distinctive than PCA-SIFT [18]. The Speed-Up Robust 

Feature Detector (SURF) developed by Bay is, basically, 

similar to the SIFT algorithm, but each step of the algorithm 

is improved [4].  

SIFT algorithm and its variants are used in the object 

tracking applications also. With the algorithm developed by 

Zhou [19], SIFT keypoints are integrated with the mean shift 

algorithm. In the proposed approach, the similarity criterion 

between two neighboring frames is determined by color 

information and SIFT features [19]. Miao proposed a SURF 

based object tracking application [20]. In that study, a search 

space is incrementally estimated for increasing the 

reusability of the tracked interest point. For computing 

descriptor, they used online boosting and a classifier based 

descriptor. 

In this paper, we developed an object tracking framework 

based on for feature extraction algorithms, such as SIFT and 

its variants. 

II. LITERATURE REVIEW 

A. SIFT Algorithm 

SIFT algorithm achieves robust results against scaling and 

rotation invariance. However, it requires a high computing 

capacity. For this reason, SIFT algorithm cannot achieve 

successful results in real-time systems [5], [21]. 
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The first step to detect the corresponding points is a 

convolution operation. The convolution operation is 

performed between Gaussian filter with different scales of 

views, and the difference of Gaussian with adjacent images 

is computed. This process is shown in Fig. 1. The 

corresponding point, called the keypoint, is defined as the 

local minimum and maximum between the difference of 

Gaussian (DOG) scales. Each pixel in the DOG image is 

compared to the neighbours in the same and adjacent scales. 

If the pixel is local minimum or maximum, this point is 

selected as the candidate point [19]. For each candidate 

point, the four steps are performed as follows. 
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Fig. 1.  Computation of the difference of Gaussian [5]. 

Stage 1. Scale space extreme detection: The scale space is 

formed by applying the Gaussian filter of images in different 

scales, and it is defined as the function ( , , )L x y  . This 

function is calculated from the convolution of Gaussian 

( , , )G x y   and input image ( , )I x y  [5]. To increase the 

application speed, SIFT uses the DOG instead of Gaussian. 

Convolved image ( , , )D x y  , can be computed with (1) 

 ( , , ) ( ( , , ) ( , , )) * ( , ),D x y G x y k G x y I x y     (1) 

where k  is a constant factor and *  is a convolution 

operation. 

After these operations, candidate interest points are 

selected as the minimum and maximum of DOG [5]. 

Stage 2. Update location: The location information of 

each candidate is updated by the color values using the 

neighbouring pixels [5]. 

Stage 3. Keypoint refinement and filtering: DOG 

operation gives a strong response along the edge. Therefore, 

for stability, low contrast candidates along the edge are 

eliminated [5]. 

Stage 4. Keypoint descriptor calculation: Gradients are 

calculated for each of the remaining interesting points [5]. 

These gradients are very useful to find the local change in 

shape distortion and illumination [19]. 

The SIFT algorithm can detect a greater number of 

interest points. It is more resident to image deformations 

also [1]. For real time application, SIFT is comparatively 

slow. For that reason, SURF algorithm was introduced by 

Bay, Tuytelaars, and Van Gool [4]. SURF algorithm was 

inspired by the SIFT algorithm and can be used for object 

recognition, classification, and registration [16]. 

B. SURF Algorithm 

SIFT and SURF algorithms have similar steps. However, 

the implementation details in each step are different. The 

main difference is that SURF algorithm is relatively more 

efficient than SIFT algorithm [1]. Furthermore, it is suitable 

for real time applications. The steps required to find the 

point of interest in SURF algorithm are given in [22]. 

1. Calculation of image integral. The purpose of 

calculating the image integral is to facilitate the box filter. 

Image integral is calculated by summing the pixel 

intensities cumulatively [22]. 

2. Box filtering. A box filter is an effective way of 

approaching a Hessian Matrix for a given pixel value. In 

SURF algorithm, Hessian calculation is used for the 

computing of the interest point [22]. 

3. Scale space generation. With this process, SURF 

algorithm achieves scale invariance. The same operation 

is performed in SIFT algorithm, but the calculation in the 

SURF algorithm is partially different [16]. In SURF 

algorithm, each filter is applied to the same integral 

image. This procedure ensures that DOG creation process 

is achieved using fewer computational cost [22]. 

4. Interest point searching. When addressing a single 

pixel used in the search process, a 3x3x3 neighbourhood 

is used to determine, whether this pixel is or not a local 

maximum. If the central pixel in the search area has the 

highest intensity value, it is marked as a local maximum. 

If the central pixel value is greater than the threshold and 

it is a local maximum, then this pixel is marked as the 

interest point [22]. 

5. After each step mentioned above, it is necessary to 

define a descriptor for each interest point. The steps used 

to create a descriptor in SURF algorithm are given below. 

6. Orientation. The main purpose of the orientation step is 

to provide a directional value for each feature. The 

orientation value of the features is calculated by the use of 

the surrounding area of the interest point. Thus, the 

rotation invariance in SURF algorithm is provided. 

7. Calculation of the descriptor. The descriptor describes 

the properties of the features, which surround the interest 

point. This region is detected with the Hessian-based 

detector. The next action is to define the characteristic 

that describes this region. This definition can be identified 

by drawing a square around the interest point and showing 

the orientation [22]. 

C. Other Feature Extraction Algorithms 

In addition to SIFT and SURF algorithms, there are many 

other feature extraction algorithms in the literature. Some of 

these are PCA-SIFT [17], Colored SIFT (CSIFT) [23,] and 

Affine-SIFT (ASIFT) [24] algorithms. When these 

algorithms are examined, there is no algorithm that works 

successfully in every case. SIFT and its variants can be 
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examined under five different conditions. These conditions 

are scaling, rotating, illumination, blur, and affine invariance 

[16]. SIFT achieves successful results in scale and rotation 

invariance. In other cases, the average results are obtained. 

The CSIFT algorithm is more successful than SIFT in blur 

invariance. In addition, it is as successful as SIFT in scale 

and rotation invariance, but the runtime is slower than of the 

SIFT. The ASIFT algorithm achieves successful results in 

affine invariance. In other cases, average results are obtained 

and the runtime is slower than of the other algorithms also. 

The PCA-SIFT algorithm generally gives above average 

results in scaling, rotation, illumination, and blur invariance. 

While in the others, it gives average results. Finally, the 

average results are obtained with the SURF algorithm for 

feature extraction, but it is the best of these algorithms in 

terms of runtime [16]. 

As can be seen, each algorithm has advantages and 

disadvantages. In every case, there is no algorithm that 

works with optimum accuracy and performance. Feature 

extraction algorithms can determine, whether the object 

exists in the next image/frame, and specify, whether an 

object exists in an image, unless the object view is 

completely changed. For this reason, they are frequently 

preferred in object tracking applications. 

One of the biggest problems in object tracking 

applications is to detect that the object is the same object 

when the object disappears and appears again. Object 

extraction algorithms are one of the most common 

algorithms used for this purpose. In [16], Wu compared 

SIFT and its variants. When we look at SIFT and its variants 

in terms of runtime, it is seen that the fastest running 

algorithm is SURF. In addition, the SIFT algorithm is the 

second fastest algorithm in terms of operating speed. Since 

the runtime of the algorithm is very important in object 

tracking applications, in this study, we compared these two 

algorithms and the Graphics Processing Unit (GPU) version 

of SURF algorithm (GPU-SURF) with the proposed 

algorithm.  

We used OpenCV Compute Unified Device Architecture 

(CUDA) implementation to calculate SURF features. The 

GPU-SURF algorithm produces similar results with the 

SURF algorithm. In cases, where the search space is too 

small, the GPU-SURF algorithm can produce incorrect 

results. Therefore, in this case, the keypoint extraction by the 

SURF algorithm is performed. This situation occurred only 

when calculating some object keypoints. As the video frame 

size is 640x480, the GPU-SURF algorithm is executed for 

keypoint extraction from video frames. In case the search 

space is small, the operating speeds of SURF and GPU-

SURF algorithms are similar. 

III. PROPOSED ALGORITHM 

This section provides detailed information about the 

interest point based object tracking framework (IPBOT). 

The flow chart of the IPBOT is given in Fig. 2. In our object 

tracking application, we did not interfere the structure of the 

feature extraction algorithm and the matching process. 

Instead, the developed algorithm offers improvements on 

matching features. It is possible to divide the improvements 

into three stages. These are outlier detection, object 

modelling, and object tracking operations. 

A. Outlier Detection with DBSCAN Algorithm 

In IPBOT, the feature matching process is obtained by the 

feature extraction algorithm. The accuracy of the matches 

has a critical importance for the correct identification of the 

object position. Yet there is no such an algorithm that you 

have a 100 % success rate. To do this, it is very important to 

detect the wrong matching points correctly. 

We are not involved in feature matching in this 

application. Instead, this study is focused on detecting 

incorrect matching. When the matchings are examined, it is 

observed that, generally, there are more correct than 

incorrect matchings. Besides, it is indicated that incorrect 

matchings are at points away from the object. Therefore, we 

can reduce the problem to find discrete points in a 

coordinate system. 

Video Sequences Feature Detection

(SIFT, SURF, etc.)
Feature Matching

Delete Outlier

Bounding Box 

Calculation

Bounding Box 

Estimation

Update Gaussian 

Parameters
Gaussian Box

Good Matches 

> Threshold

Yes

No

 
Fig. 2.  The structure of the IPBOT algorithm. 
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DBScan algorithm [25], which is a statistical 

classification method, is used for the detection of discrete 

points. The DBScan algorithm is a density-based clustering 

algorithm. It can easily classify the clusters with different 

shape and different number of elements. It is also simple to 

use and implement. The structure of the DBScan algorithm 

is given below and shown in Fig. 3 [25]: 

1. Starts from a desired point in the dataset (red point); 

2. The distance between this point and other points is 

calculated. If the calculated distance is less than the 

epsilon value (eps), it is included in the cluster (blue 

points); 

3. In this way, all detected points are considered to be 

central, and new cluster elements are detected iteratively. 

For this purpose, the Depth First Search approach is used; 

4. Clustering process is executed for all points in the data 

set iteratively and finds all other groups (green points); 

5. If the set is less than the minimum number of elements 

(MinPts), it is marked as noise (remaining black points). 

In the DBScan algorithm, the most important parameters 

are the eps and MinPts parameters. Normally, eps is 

obtained by calculating the mean of the distance between 

points. However, in this study, we preferred to use a fixed 

value. The general algorithm of outlier detection with 

DBScan is given in Algorithm 1 and an example 

demonstration of the DBScan on interest points is given in 

Fig. 4. Algorithm 1 shows that the MinPts parameter is 

calculated according to the number of cluster elements. 

Moreover, as can be seen in Fig. 4, number of 5 matching 

matches (red features) are marked as incorrect and these 

matches are excluded from calculation. As a result, the 

accuracy of object detection significantly increased. 

Algorithm 1.  Outlier Detection with DBSCAN. 

Inputs: kp= keypoints, mt= matches 

Outputs: kp= kp results mt: mt results 

 

1:  for all keypoints in dataset  

2:      read next_point in keypoints 

3:      if (next_point not visited) 

4:          DFS (next_point) 

5:      endIf 

5:  endFor 

6:   

7:  max = find max element set 

8:  if (1<max<6) minPts = 1      

9:  else if (6≤max<12) minPts = 2      

10: else if (12≤max<18) minPts = 3     

11: else if (18≤max<24) minPts = 4   

12: else minPts = 5    

13: Delete sets that do not have enough 

elements 

14: Save remaining keypoints and matches 

Eps Eps

Eps

Eps

Noise

Set-1

Set-2

 
Fig. 3.  The structure of the DBScan algorithm. 

 
(a) 

 
(b) 

Fig. 4.  Example demonstration of the DBScan algorithm on SIFT interest 

point: (a) Object keypoints extracted with SIFT shown in cyan color; (b) 

Final object keypoints after DBScan algorithm shown in green color. 

Incorrect object keypoint shown in red color. 

B. Object Modelling 

After clearing incorrect matching, the position of the 

object is estimated approximately. To estimate the object 

position, a homography calculation is made between the 

object and the video frame. A homography is a 3x3 matrix 

transformation that maps the points in an image to the 

corresponding points in the other image [26]. However, at 

least four matching points are required to calculate 

homography accurately. For homography calculation, a 

random Sample Consensus algorithm (RANSAC) is used 

[27]. The RANSAC algorithm is an algorithm developed by 

Fischler and Bolles in 1981. It ensures a robust fitting of 

models. In the experiments, successful results can be 

obtained, in case of outliers. However, we chose to apply at 

least 10 matching points in this application. Because, if there 

are incorrect matches and the number of matches is low, the 

object position cannot be found successfully. 

In this study, the object is defined by box representation. 

As shown in Fig. 5, there are six values in our object model. 

As a result of calculating matching keypoints, kpx  and 
kpy  

values are obtained, and by calculating homography, ,x ,y  

,w  and h  values are achieved. 

The Gaussian model is used for these six values. Every 

value has its own Gaussian model. First, we initialize object 

models using the recent history of t  object positions. Then, 

66



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 26, NO. 1, 2020 

 

the probability function is calculated at a given value at time 

t  as follows 

 ,( ) ( , , ),t i t t i iP X w n X    (2) 

where tX  object modelling value in frame ;t  ,i tw  is the 

weight of the distribution in frame ;t  i  is the mean of the 

distribution; i : The standard deviation of the distribution. 

Here ( , , )t i in X    is Gaussian probability density function 

and calculated as in (3) 

 

2

22
1

( , , ) ,
(2 )

tX

t i in X e 
 



   (3) 

where  is the standard deviation. After initialization the all 

model, we should separate the model as bounding box 

estimation (BBE) or bounding box calculation (BBC). ,x  

,y  ,w  and h  are Gaussian models used for the selection for 

the next algorithm. The algorithm selection process is also 

given in (4) 

 
1

1 ,

0 ,

g
k

k

if w T
n

otherwise



 


  (4) 

where g  is the total number of Gaussian model and T is the 

threshold value. Here, it is checked, whether the Gaussian 

value is greater than the T  threshold. If 2n  , the BBC is 

performed. The BBC operation is the process of generating 

values, which have not reached the threshold value by 

applying Gaussian model. Thus, four values are obtained for 

the object model. If 2n  , the BBE is performed. The kpx  

and 
kpy  values are controlled with (4). If both exceeds the 

threshold value, the center of the object is determined by the 

values of kpx  and 
kpy . If one of them does not exceed the 

threshold value, the Gaussian models are used for both of 

them to determine the center of the object.  

w

h

( , )x y

( , )kp kpx y

 
Fig. 5.  Our 6-point object model. 

Finally, the w  and h  values of the object are calculated 

according to the Gaussian distribution and the x  and y  

values of the object are calculated using the center of the 

object as in (5) and (6): 

 ,
kp

kp i
o

xo
x xi w

w
   (5) 

 .
kp

kp i
o

yo
y yi h

h
   (6) 

(5) and (6) provide the equivalence (7) 

 1 1 1 1

2 2 2 2

.
o i o i

o i o i

w w h h

w w h h
    (7) 

All parameters of (7) are shown in Fig. 6. 
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Fig. 6.  Object model parameters for object and video frame. 

After all these operations are completed, there are now 

two possibilities left, whether the object is found or not. If 

the object is found successfully, the next step is the object 

tracking. If not, it is taken to the next frame and the 

operations start from the beginning. 

C. Object Tracking 

In this section, Gaussian model is applied to the object 

tracking. Our interest point based object tracking may 

incorrectly predict the position of the object in some instant 

frames. This condition is usually temporary, and, in 

subsequent frames, this condition usually improves. 

Although this error is largely addressed by the calculations 

given in Section III-A, some frames may still be inaccurate. 

Nowadays, videos usually have a value of 30 fps. This 

means that the time between two frames is about 0.03 

seconds. Based on this theory, Gaussian smoothing process 

is applied by using the object position in last 5 frames, 

because the last object positions are important in this 

process. However, in case of a mismatch in the last object 

position, this error is softened with Gaussian. Also, they can 

also adapt to abrupt the motion of the object. As a result of 

this study, the object tracking accuracy is increased between 

2 % to 10 %. 

IV. EXPERIMENTAL RESULTS 

In this section, we present the experimental results. All 

experiments are performed on a machine equipped with an 
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Intel Core i7-3770 CPU at 8GB RAM and a GeForce GTX 

660 Ti GPU. The GPU used in this study includes 7 

streaming multiprocessors (SM) and each SM has 192 

CUDA processors. The global memory size of the GPU is 

2 GB and it is accessed via the GDDR5 interface. Double 

precision floating-point arithmetic is supported on the GPU 

architecture. 

For object tracking experiments, we use Bonn Benchmark 

on Tracking (BoBoT) Dataset [28]. The BoBoT dataset 

includes 12 short video sequences provided an AVI format 

with 320x240 pixels at 25 fps. The number of frames on 

video in the BoBoT dataset ranges from 305 to 1308, and 

the ground truth data are given for each frame also. Due to 

the low video resolution, in some cases, the object can be 

very small. In this study, we convert the video resolution to 

640x480. The first frames of the videos in the dataset and 

the targeted objects to be tracked are given in Fig. 7. 

 
Fig. 7.  First frames of BoBoT video dataset. 

In the BoBoT dataset, different features are tested on each 

video sequences. For example, on the first video sequence, 

its aim is to track a Football Ball. In this video sequence, an 

abrupt motion and camera motion are tested. On the third 

video sequence, scaling and appearance changes are tested, 

as well as abrupt motion and moving camera. Table I shows 

the difficulties for each video sequence in the BoBoT dataset 

[29]. The features tested on each video sequence are 

indicated by the symbol “+” in Table I. Other untested 

features are indicated by the symbol “-”. In order to evaluate 

the performance of the developed application, the first frame 

is taken from the video and the object is extracted with the 

ground truth. This extracted image is selected as a base 

image and the remaining frames are used for testing. 

First 9 videos in the dataset were tested. Our tracker was 

integrated with SIFT, SURF, and GPU-SURF algorithms, 

and we compared the traditional methods with our tracker. 

As a result of the experiments, similar results were obtained 

on SURF and GPU-SURF algorithms. The only difference 

between two algorithms is that, the GPU-SURF algorithm 

works faster. 

TABLE I. BOBOT DATASET VIDEO SEQUENCE AND THEIR 

DIFFICULTIES FOR OBJECT TRACKING [29] (D1: SCALE, D2: 

OCCLUSION, D3: CAMERA MOTION, D4: ABRUPT MOTION, D5: 

SIMILAR APPEARANCE, D6: SCENE CLUTTER, D7: MOTION 

DIRECTION, D8: APPEARANCE CHANGES, D9: DISAPPEARANCE, 

D10: ILLUMINATION). 

Sequence No. D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 

1 - - + + - - + + - - 

2 + - + - - + - + - - 

3 + - + + - - + + - - 

4 - - + - - - - + - - 

5 - + + - - - - - - - 

6 - + + - + - - + + - 

7 - - + - - - - + - - 

8 - - - - - - - + - + 

9 - + + - + - - + + - 

10 - + + - - - - + + - 

11 + - + - + - - + - - 

12 + - + - - - - + - - 

 

We evaluated our IPBOT tracker by comparing it with 

SIFT and SURF algorithms. Comparison results are shown 

in Fig. 8. In the figure, a video stream is given on each line. 

Also, the video no is shown on the left side of the figure. 

The results of the tracking algorithms on the figure are 

shown with a different color for each algorithm. The 

proposed IPBOT algorithm is indicated by green color, 

SIFT, SURF, and ground truth are indicated by red, blue, 

and turquoise colours, respectively. Our IPBOT tracker was 

tested with different challenges and has generally achieved 

satisfactory results. The results showed that the IPBOT 

algorithm provides more successful results than the other 

algorithms. In some cases, the standard SIFT and SURF 

algorithms cannot produce results for object tracking. For 

example, in the second video sequence, the SURF algorithm 

generally does not produce results. Similarly, both SIFT and 

SURF algorithms cannot generate adequate results for the 

6th video sequence.  

As we mentioned in the previous section, SIFT algorithm 

extracts more keypoint than the SURF and GPU-SURF 

algorithms. For this reason, the object tracking framework is 

more successful with the SIFT algorithm. In order to 

measure the success rate, the average of Sensitivity (Se) and 

Precision (Pr) values was used. Their equation is given in (8) 

 .
TP TP

Se Pr
TP FN TP FP

  
 

 (8) 

In these equations, the True Positive (TP) value indicates 

the correctly estimated object point number, while the False 

Positive (FP) and False Negative (FN) values indicate the 

number of incorrect object points and missed number of 

object points that cannot be detected, respectively.  

The developed algorithm is suitable for SIFT and its 

variants. They fail when the object view changes 

dramatically. As seen in Table II, the success rate of SIFT 

algorithm is low, because the object view changed at 

sequence numbers 1, 4, and 7. The developed algorithm 

provided great improvements in these type of videos. As 
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seen in the Table II, the success rate of object tracking was 

greatly increased. Only in the 5th and 8th video sequence, 

there was a slight increase in success rate. This is because 

the SIFT and its variants were already successful in these 

videos. 

  
Fig. 8.  Tracking results for video sequence. 

As a result, the success rate increased from 56.88 % to 

82.2 % for the SIFT, from 51.05 % to 77.25 % for SURF, 

and from 48.61 % to 78.11 % for GPU-SURF. The success 

rate of the SURF and GPU-SURF algorithms is similar, but 

GPU-SURF is much faster in terms of runtime than the other 

two algorithms. The runtime of all algorithms based on the 

frame per second (fps) are given in Table III. In addition, the 

percentage of developments is given in parentheses. As seen 

in Table III, the slowest algorithm is SIFT algorithm, while 

the fastest algorithm is the GPU-SURF algorithm. The 

IPBOT algorithm is integrated into SIFT, SURF and GPU-

SURF algorithms. In addition, the GPU-SURF + IPBOT 

algorithm achieved an average of 39.15 fps. This suggests 

that it may be appropriate for a real-time application. 
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TABLE II. COMPARATIVE RESULTS OF SUCCESS RATE WITH 

SIFT, SURF, AND GPU-SURF ALGORITHMS. THE PERCENTAGE OF 

DEVELOPMENTS IS GIVEN IN PARENTHESES. 

Sequence 

No. 
SIFT SURF 

GPU-

SURF 

SIFT + 

IPBOT 

SURF + 

IPBOT 

GPU-SURF 

+ IPBOT 

1 33.5 24.0 24.7 
73.2 

(% 118.4) 

60.6 

(% 152.4) 

63.1 

(% 155.7) 

2 46.2 39.9 33.9 
85.5 

(% 85.0) 

86.3 

(% 116.5) 

82.9 

(% 144.3) 

3 76.3 71.2 68.0 
91.6 

(% 20.2) 

87.7 

(% 23.1) 

85.8 

(% 26.1) 

4 45.9 38.3 37.8 
81.1 

(% 76.8) 

65.9 

(% 71.9) 

69.5 

(% 83.9) 

5 93.1 91.1 90.6 
93.8 

(% 0.7) 

93.7 

(% 2.8) 

92.9 

(% 2.6) 

6 42.4 42.8 42.9 
67.2 

(% 58.7) 

66.7 

(% 55.8) 

71.6 

(% 66.8) 

7 39.4 32.5 32.1 
81.7 

(% 107.1) 

77.3 

(% 138.1) 

77.7 

(% 141.9) 

8 87.7 79.3 71.0 
97.8 

(% 11.4) 

93.7 

(% 18.1) 

93.5 

(% 31.7) 

9 47.3 40.3 36.5 
67.8 

(% 43.3) 

63.5 

(% 57.6) 

66.0 

(% 81.0) 

Average 56.9 51.1 48.6 
82.2 

(% 44.5) 

77.3 

(% 51.3) 

78.1 

(% 60.7) 

TABLE III. COMPARATIVE RESULTS OF RUNTIME (FPS) WITH 

SIFT, SURF, AND GPU-SURF ALGORITHMS. THE PERCENTAGE OF 

DEVELOPMENTS IS GIVEN IN PARENTHESES. 

Sequence 

No. 
SIFT SURF 

GPU-

SURF 

SIFT + 

IPBOT 

SURF + 

IPBOT 

GPU-SURF 

+ IPBOT 

1 9.1 18.8 48.9 
9.0  

(%-0.2) 

18.4  

(%-2.4) 

48.1  

(%-1.5) 

2 6.3 12.1 37.8 
6.3  

(%-0.7) 

11.8  

(%-1.9) 

37.3  

(%-1.4) 

3 7.7 14.2 42.7 
7.7  

(%-0.2) 

14.2  

(%-0.6) 

41.3  

(%-3.3) 

4 4.6 9.9 27.0 
4.6  

(%-1.2) 

10.0  

(%0.9) 

29.1  

(%-7.8) 

5 6.9 13.2 37.6 
6.8  

(%-1.1) 

13.2  

(%-0.0) 

36.5  

(%-2.9) 

6 7.4 12.7 34.4 
7.2  

(%-1.7) 

12.8  

(%-0.8) 

36.3  

(%-5.5) 

7 8.8 18.4 51.7 
8.6  

(%-2.4) 

18.2  

(%-1.5) 

51.0  

(%-1.4) 

8 8.0 14.8 39.2 
7.9  

(%-1.2) 

14.8  

(%-0.1) 

41.4  

(%-5.6) 

9 4.5 10.9 29.8 
4.5  

(%-0.3) 

11.0  

(%-0.8) 

31.4  

(%-5.2) 

Average 7.0 13.9 38.8 
7.0  

(%-0.8) 

13.8  

(%-0.6) 

39.2  

(%-0.9) 

V. CONCLUSIONS 

Our main goal is to create an object tracking framework 

by getting rid of the incorrect matching keypoints generated 

by the feature extraction algorithms. The feature extraction 

algorithms can extract many properties of the object and use 

these properties successfully. With this presented 

framework, all these algorithms can be used for object 

tracking application. 

For a feature extraction algorithm, after matches the 

properties, outlier detection, object modelling, and object 

tracking are performed. Outlier detection is performed using 

the DBScan algorithm. The DBScan algorithm minimizes 

keypoints mismatches that occur as a result of keypoints 

matching between the object and the video frame. Thus, 

even when the number of matching keypoints is small, the 

object position is successfully detected. Another 

improvement is performed at the object modelling stage. The 

object structure is modelled using 6 points, and the Gaussian 

model is used for each point. Normally, object detection can 

be done via keypoints, but the number and accuracy of the 

matching keypoints is important for successful object 

detection. If there are few keypoints matches, it must be 

error-free, but only, if there are many keypoints matching, 

the incorrect points may be accepted. Our proposed method 

estimates the object position accurately even if there are few 

and incorrect matching keypoints. This progress is possible 

with the 6-point Gaussian object model.  

The IPBOT algorithm is adapted to the traditional SIFT, 

SURF, and GPU-SURF algorithms and the adapted IPBOT 

methods are compared with the traditional algorithms. 

According to the results, the runtime of the IPBOT 

algorithm is approximately the same as of the traditional 

algorithms. As seen in the experiments, there is no 

significant runtime difference between the traditional 

algorithms and the IPBOT algorithm. Furthermore, IPBOT 

provides to increase the object tracking performance by 

about 50 %. In future work, the authors will try to evaluate 

this developed algorithm using background model or 

supervised classification. 
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