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 

Abstract—The mathematical model used in this paper is not 

only the traditional node voltage equation but also the 

introduction of the branch current equation when research the 

power system reactive power optimization, and so establishes a 

mathematical model of hybrid power network node voltages and 

branch currents. The state variables in this model are the node 

voltages and branch currents, the network flow is explicitly 

expressed, and they play a key role for the simplification of the 

solving model. Solving the model will be broken down into two 

sub-problems, one is a network loss minimization objective 

augmented Lagrange function, forming the Kuhn-Tucker 

conditions, and the other is a linear equation. IEEE 30-bus 

system example shows that the complexity and high dimension 

of the model solution have been significantly improved, the 

solving process becomes easier, and the solution is close to the 

global optimal solution. Compared with traditional optimal 

power flow algorithm, this algorithm can improve the 

computational efficiency of reactive power optimization. 

 
Index Terms—Current, optimization methods, power 

systems, reactive power. 

I. INTRODUCTION 

Reactive power optimization of the power network is a 

dynamic, multi-bound and nonlinear nixed planning which 

involves the choice of reactive power compensation location, 

reactive compensation capacity, transformer tap adjustments 

and the generator terminal voltage tie with other aspects. 

Reactive power optimization of power system is on the 

condition of ensuring the system reactive power balance, 

reduce loss of the entire network, save system operating costs, 

and improve the voltage quality by regulating the generator 

bus voltage, on-line tap changer tap stalls, and the capacity of 

reactive power compensation equipment.  

The mathematical model includes the choice of objective 

function and constraints of the agreement, generally 

expressed as (1). 

In (1), x  is the state variable, refers to the node voltage, u  
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is control variable, means that the node injection of reactive 

power, the functions ( , )f x u , ( , )g x u  and ( , )h x u  

respectively represent the network loss (objective function), 

the equality and inequality constraints 

 

min ( , )

( , ) 0,
. .

( , ) 0.

f x u

g x u
s t

h x u






 (1) 

There are several ways to solve (1), including linear 

programming [1], [2], nonlinear programming (including 

quadratic programming method [3], [4], interior point 

methods [5]–[8], evolutionary programming [9]–[11], etc.) 

and intelligent algorithms [12]–[17]. All these algorithms are 

based on the node voltages equation, in which the node 

voltage, nodal injected active or reactive power as variables. 

Although the node voltage analysis method is effective, but 

there are some problems and shortcomings:  

1) As the most obvious feature of the electricity network, 

the trend of the amount is not directly reflected, during power 

network analysis, the success of many network flow theory 

and not being used;  

2) Due to the large number of inequality constraints, there 

is the problem of the "curse of dimensionality", and therefore 

it is necessary to improve its computational efficiency. 

Power state through the node voltage, node injection active 

power, node injection reactive power and branch currents 

reflect these physical quantities. References [18], [19] are 

based on branch-current model for distribution network, the 

flow convergence is better, but the model ignores the 

admittance, and the use of a constant load impedance model, 

it is not suitable for transmission network. 

Therefore, it is necessary to introduce branch current as the 

state variables in order to overcome the above problems. This 

paper has established a grounding branch as a current source, 

and forms the expansion power network equations including 

node voltage variable and branch current variable. Thus, the 

objective function can be written as the product of the line 

current and impedance. The reactive power optimization 

problem can be decomposed into two sub problems, one is the 
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minimum cost flow model and the other is a linear equation 

group. The former can be solved by quadratic programming 

method. The method in this paper has high calculation 

efficiency of the algorithm, and close to the global optimal 

solution. It has got better results by analysis IEEE-30 system. 

This paper has the following assumptions:  

1) The reactive power optimization inject reactive power to 

all nodes in the optimal target;  

2) The net loss reduce small when adjust transformer tap, 

so ignore the optimization of the transformer turns ratio;  

3) The active power is regarded as a constant, reactive 

power of all nodes and node voltage are considered variables 

except slack bus;  

4) The power load model is constant; 

5) Assumed that the power grid is a three-phase balanced 

network. 

II. POWER SYSTEM NETWORK MODELLING 

The electric power system network is typically used by an 

impedance branch and two grounded branch consisting of a 

π-type equivalent circuit approximation (Fig. 1). Therefore, 

electric power network equations make up of the impedance 

equation and the earthed branch circuit equation. Which, each 

node load can have a variety of equivalent forms, and the load 

is equivalent to the voltage source in this paper. 

ijij jXR 
iS jS

i j

ii jBG  jj jBG 

lI
. 

 


iU

.



jU

.

 
Fig. 1.  π-type equivalent circuit 1. 

In Fig. 1, ji i iS p q  , jj j jS p q   are the node ,i j  

injection power respectively, assume node ,i j  voltage vector 

as 
.

cos j sini i i i iU V V   , 
.

cos j sinj j j j jU V V   , 

respectively, branch current is 
.

ja r
l l lI i i  , jij ijR X  is the 

impedance of impedance branch, ji iG B  is the grounded 

branch admittance value of node i , subscript , 1,2, ,i j N   

is node No., subscript 1,2, ,l L   is branch No., so the 

branch equation can be expressed 

 
. .

( j ) .l i jij ijI R X U U


    (2) 

The mixed power network branch current - node voltage 

equations can be obtained by deducing (2): 

 cos cos 0,a r
l ij l ij i i j ji R i X V V      (3) 

 sin sin 0.a r
l ij l ij i i j ji X i R V V      (4) 

For node i , the node injection power equals the product of 

node voltage and branch current conjugate when the load is 

treated as voltage source. Node injection current is divided 

into two parts, one is earth branch and the other is load 

branch, and then the power equation is 

 ( j ) j ,i li i l l i i
l i l i

U i U G B p q
 

 

 
    

 
   (5) 

where li
l i

i




  is node injection current, its plural form is 

ja r
li li li

l i l i l i

i i i
  

    , which means the sum of all branch 

currents associated with node i . ( j )i l l
l i

U G B


  is the sum 

of ground branch currents associated with node i , and 

( j )l l
l i

G B


  is the sum of ground branch admittances 

associated with node i . Then the current of load branch 

equals node injection current minus ground branch current. 

In order to simplify the equation derivation and calculation, 

ignore the node ground branch conductance lG , and suppose 

a
i li

l i

x i


  , 
r

i li
l i

y i


  , 0i l
l i

B B


  expand (5): 

 cos sin ,i i i i i i iV x V y p    (6) 

 
2

0cos sin .i i i i i i i i iV y V x V B q      (7) 

There are the same form equations for the node j .We can 

obtain (8) by deducing (3) and (4): 

 

( cos cos )

( sin sin ),

( sin sin )

( cos cos ),

a
l ij i i j j

ij i i j j

r
l ij i i j j

ij i i j j

i G V V

B V V

i G V V

B V V

 

 

 

 

    

  


   


 

 (8) 

where, ,ij ijG B  is the admittance of branch l . Brings it into 

(6) and (7) can get the traditional forms of node voltage 

equation: 

 

2
0

cos ( cos sin )

cos ( sin cos ) 0,

sin ( cos sin )

cos ( sin cos ) 0.

i i i ij j j ij j j
j i

i i ij j j ij j j
j i

i i i ij j j ij j j
j i

i i ij j j ij j j i i
j i

p V G V B V

V G V B V

q V G V B V

V G V B V V B

  

  

  

  









  


  

   


   











(9) 

The difference in (9) is that there do not contain ground 

branch susceptance in the node self-susceptance iiB . This 

also verified that the introduction of the branch current does 

not change the nature of the equations. And with the 

introduction of the branch current the directly observed values 
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increase. It can be directly expressed by branch current like 

the question of network loss. 

Mixed equations of the electricity network are composed 

by (3), (4), (6), (7), and node voltage and branch current are 

the state variables. The equations are linear function of the 

branch current and nonlinear function of node voltage. 

Figure 2 is a π-type equivalent circuit of current source 

simulated ground branch, where, GiI


 is the ground branch 

current of node i . 

ijij jXR 
iS jS

i j

lI
. 

 


iU

.



jU

.

GiI


GjI


 
Fig. 2.  π-type equivalent circuit 2. 

III. REACTIVE POWER OPTIMIZATION 

The global minimum network loss objective function of 

reactive power optimization can be expressed as 

 
2 2

1

min ( ) ( ) ,
L

a r
l l l

l

f i i R


  
   (10) 

where 1,2, ,l L . Equality constraint are (3), (4), (6), (7), 

inequality constraints are: 

 
min max ,i i iV V V   (11) 

 
min max .i i iQ Q Q   (12) 

Equation (13) can be obtained by deducing (6) 

 
cos sin

i
i

i i i i

p
V

x y 



 (13) 

and then 

 min max

cos sin

i
i i

i i i i

p
V V

x y 
 


 (14) 

and from (7): 

 
min 2 max

0sin cos .i i i i i i i i i iQ V x V y V B Q      (15) 

The reactive power optimization mathematical model is 

(10), (3), (4), (6), (7), (14) and (15), it has the following 

characteristics:  

1) The target function is a quadratic function of branch 

current variables;  

2) The constraint is the linear function of branch current 

variables. 

The injection active power is a constant value for all nodes 

in reactive power optimization model, and variables are 

divided into branch current, node voltage and reactive power 

injection. Branch currents and node voltages represent the 

network status, they are considered as state variables, and 

node injected reactive power is the control variable. The 

augmented Lagrange function of reactive power optimization 

model is 

 

2 2

1

2
0

1

( , , ) ( ) ( )

( cos cos )

( sin sin )

( cos sin )

( cos sin )

cos sin

L
a r
l l l

l

a a r
l ij l ij i i j j

r a r
l ij l ij i i j j

p a r
i i i li i i li

l i l i

q
i i i i i i i i i

u i

i i i i

L U I Q i i R

i R i X V V

i X i R V V

p V i V i

q V y V x V B

p

x y

  

  

  

  


 



 

   
 

    

    

   

    






 

max

2 min

1 min 2
0

2 2 max
0

cos sin

( sin cos )

( sin cos ).

u i

i i i i

q
i i i i i i i i i

q
i i i i i i i i i

V

p
V

x y

Q V x V y V B

V x V y V B Q


 

  

  

 
  

 

 
   

 

    

   

 (16) 

Due to the partial derivatives / 0q
iL q      of the 

control variable iq , and iq  is only in (7), so (7) can be 

omitted, and the optimal solution has nothing to do with the 

iq . So, the reactive power optimization model can be 

simplified by the (10), (3), (4), (6), (14) and (15), and 

optimize only for state variables ,

T

l iI U
  

 
 

. Eventually 

optimal node inject reactive power iq  can be calculated by 

(7). 

IV. MODEL SOLUTION 

We assume that cos cosi i j jE V V    and 

sin sini i j jF V V    from (3) and (4), the (17) can be 

obtained 

 .

a
ij ij l

r
lij ij

R X IE

F IX R

                 

 (17) 

Equations (17) are linear, and each node voltage value can 

be calculated if known the real part value and the imaginary 

part value of branch current. 

Reactive power optimization model (call the problem A) 

composes by (10), (6), (14), (15) and (17). It can be broken 

down into two sub-problems: one is (10), (14), (15) named S, 

and the other is composed of linear equations (6) and (17). 

Problems A can be described as (1), where u  is expressed 

as a real part and an imaginary part of the branch current 

vector, x  is expressed in amplitude and phase angle of nodal 

voltage vector. ( , ) 0h x u   is the inequality constraints, in 
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particular are (14) and (15). ( , ) 0g x u   is the equality 

constraints, in particular (6) and (17). So the Kuhn-Tucker 

condition of problems A is: 

 

0,

0,

( , ) 0,

0,

( , ) 0,

( , ) 0.

T T
x x x

T T
u u u

T

f h g

f h g

h x u

h x u

g x u

 

 





   

   

 






 

 (18) 

In (18),  and   are the Lagrange factor. Because there is 

no node voltage vector in the objective function, 0xf  , so 

(18) can be written as: 

 

1( ) 0,

( , ) 0,

0,

( , ) 0,

( , ) 0.

T T T T
u u u x x

T

f h g g h

h x u

h x u

g x u

 





   









 

 (19) 

Similarly, sub-problem S can be described as: 

 
min ( , ),

. . ( , ) 0.

f x u

s t h x u





 (20) 

Its Kuhn-Tucker condition is: 

 

0,

( , ) 0,

0,

( , ) 0.

T
u u

T

f h

h x u

h x u







  










 (21) 

Comparing (19) with (21) we find that the difference 

between them lies in ( , ) 0g x u  and (22) 

 
' 1( ) .T T T

u x xu g g h     (22) 

Obviously, the solutions calculated by solving the 

sub-problem S and linear equations (6) and (17) are not 

equivalent with that of problem A because of 
'u . In order to 

obtain the exact solution of the reactive power optimization, 

the variable u  must be modified according to (22) after 

solving the sub-problem S. 

Solution of the whole model iteration steps are as follows: 

1) Assuming 0k   set the initial value to
( )kU ; 

2) To ( )kI , 
( )kU  as state variables for solving 

sub-problem S, get branch current ( 1)kI  ; 

3) If 
( 1) ( )k kI I     (   is a small positive number) 

finish iteration and go to step 5), otherwise continue; 

4) The node voltages can be calculated by using (6) and 

(17), 1k k   and return to step 2); 

5) The node reactive power injection will be calculated by 

using (7). 

The solution of sub-problem S is global optimal because it 

is about convex quadratic programming problem of line 

resistance, and (6), (17) are linear equations which have the 

only solution. Therefore, the optimal solution obtained finally 

is closely enough to the global optimal solution. 

V. EXAMPLE ANALYSIS 

The case study is made at IEEE-30 system with active set 

arithmetic solved the sub-problem S. The upper limit of 

voltage at node 10 is set as 1.0421 and the upper limit of 

voltage at node 24 is set as 1.0261 while upper limit of voltage 

is set as 1.1 and lower limit of voltage is set as 0.95 at all 

nodes. 

The final calculating results are listed in Table I, and the 

reactive powers at node 10 and 24 are 0.144558 and 

0.0914809 calculated by the nodal injective current. 

TABLE I. IEEE-30 SYSTEM NODE CALCULATION RESULTS. 

Node 

Numbe

r 

Voltage 

Magnitu

de 

Voltage 

Single 

Real Part of 

Nodal Injective 

Current 

Imaginary 

Part of 

Nodal 

Injective 

Current 

1 1.0012 -12.867 0.0994 -0.0422 

2 1.0341 -2.773 -0.3471 0.0024 

3 1.0313 -4.746 0.0243 0.0118 

4 1.0261 -5.686 0.0778 -0.0470 

5 1.0062 -9.054 0.6936 -0.0466 

6 1.0219 -6.561 0.0075 -0.1056 

7 1.0067 -8.112 0.2114 -0.1204 

8 1.0232 -6.565 -0.0430 0.0520 

9 1.0540 -8.392 -0.0030 0.0770 

10 1.0390 -10.181 0.0914 0.1781 

11 1.0911 -6.854 -0.1456 0.1647 

12 1.0532 -9.537 0.1044 0.0277 

13 1.0888 -8.830 -0.1198 0.2407 

14 1.0382 -10.440 0.0560 -0.0260 

15 1.0341 -10.550 0.0736 -0.0382 

16 1.0404 -10.084 0.0301 -0.0229 

17 1.0342 -10.361 0.0754 -0.0708 

18 1.0237 -11.121 0.0290 -0.0146 

19 1.0211 -11.267 0.0848 -0.0508 

20 1.0242 -11.053 0.0197 -0.0108 

21 1.0279 -10.674 0.1471 -0.1386 

22 1.0302 -10.675 -4.9789×10-5 
8.0926×10-

5 

23 1.0268 -11.021 0.0277 -0.0213 

24 1.0258 -11.299 0.0787 0.0085 

25 1.0241 -11.141 -6.6480×10-6 
1.9351×10-

5 

26 1.0060 -11.557 0.0296 -0.0294 

27 1.0322 -10.783 0.0090 0.1032 

28 1.0180 -6.980 0.0011 -0.0788 

29 1.0118 -11.996 0.0214 -0.0136 

30 1.0502 0 -1.3347 0.0185 

 
The thirteen iterations are needed with step 3.24 listed in 

Table II. The upper limit of voltage at node 10 is violated in 

iteration 4, then the search direction is changed and the 

violation is eliminated with Lagrange factor 0.0178555. Up to 

iteration 12, the upper limit of voltage at 24 is violated and it 

is eliminated with Lagrange factor 0.0079243. The final 

network losses are reduced from 0.0879016 to 0.0873921. 
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TABLE II. CALCULATING PROCESS INFORMATION. 

Iteratio

ns 

Network 

losses 

Lagrange 

Factors 

Voltage 

Magnitude 

at Node 10 

Voltage 

Magnitu

de at 

Node 24 

1 0.0879016 0 1.04077 1.02017 

2 0.0878057 0 1.04146 1.02195 

3 0.0877322 0 1.04190 1.02334 

4 0.0876737 0.0178555 1.04214 1.02441 

5 0.0876258 0 1.03724 1.01923 

6 0.0876102 0 1.03812 1.02109 

7 0.0875532 0 1.03873 1.02254 

8 0.0875103 0 1.03913 1.02367 

9 0.0874768 0 1.03936 1.02454 

10 0.0874499 0 1.03947 1.02521 

11 0.0874275 0 1.03949 1.02573 

12 0.0874085 0.0079243 1.03943 1.02612 

13 0.0873921 0 1.03662 1.02269 

 

The comparing results of proposed approach with Newton 

method and reduced gradient algorithm are listed in Table III 

while the inequality constraints are ignored. It can be seen that 

optimization effect of proposed approach is better than 

Newton method and reduced gradient algorithm.  

TABLE III. COMPARING RESULTS WITH OTHERS. 

Arithmetic 
Proposed in 

This Paper 

Newton 

Method 

Gradient 

Method 

Network Losses 0.0852368 0.0854694 0.0854816 

Injective Reactive 

Power at Node 10 
0.1746810 0.2937780 0.2872100 

Injective Reactive 

Power at Node 24 
0.0157019 0.1408180 0.1534660 

 

The comparing results of voltage magnitude with Newton 

method and reduced gradient algorithm are listed in Table IV. 

The results show that the node voltage magnitude is more 

closed to the standard data calculated by the proposed 

algorithm in this paper, so the error of voltage magnitude is 

smaller while optimizing the reactive power.  

TABLE IV. COMPARING NODE VOLTAGE MAGNITUDE WITH 

OTHERS. 

Arithmetic 

Standard 

Data 

Proposed 

in this 

Paper 

Newton 

Method 

Gradient 

Method 

Voltage 

Magnitude at 

Node 10 

1.0339 1.0390 1.0402 1.0399 

Voltage 

Magnitude at 

Node 24 

1.0108 1.0258 1.0262 1.0264 

VI. DISCUSSION AND OUTLOOK 

The hybrid electric power network equations composed of 

node voltage and branch current can also provide useful ideas 

to solve practical problems of power system in several other 

areas in addition to the excellent performance in the reactive 

power optimization. 

A. Explicit expression of node voltage high and low 

solutions 

Deducing (5) can obtain: 

2 2
0
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 (23) 

where 
.

ji i iU e f   is the voltages of node i  expressing as 

rectangular coordinate, and the node ground branch 

conductance lG  has been ignored. 

Equation (23) is the node voltage analytical expression 

represented by the branch current. It represents the high and 

low solutions of node voltage, and then the problem of 

multiple solutions of power system can be analyzed by using 

(23). 

B. Voltage instability region (unstable round) 

If (23) have solutions the following condition must be met 
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The meaning of (24) is: 

1) When the square of the amplitude of the injection current 

of nodes is out of the circle of which the center is 02 i iB q  and 

the radius is 2 2
02 i i iB q p , that is only ‘>’ condition has 

been met in (24), the high and low solutions of (23) exist, and 

the system is stable;  

2) When the square of the amplitude of the injection current 

of nodes is in the circle, that is only ‘<’ condition has been met 

in (24), no solutions of (23) exist, so the system is unstable;  

3) Equation (23) has a unique solution and the solution is 

on the circle when ‘=’ condition has been met in (24), so the 

unique solution is the stable margin of system. The voltage 

collapse point can be found if calculate the power flow 

equations under this conditions. 

C. Voltage stability critical condition 

When the equality of (24) meets the two solution curves of 

node voltage intersect, and reach the voltage stability critical 

point. So, the voltage stability critical condition is 

 2 2
0( ) 2 ,i i i ix y B    (25) 

where 
2 2

i i i iq p q    . Equation (25) is called the 

characteristics of the voltage stability critical point. When 

(25) is met at any node of power system the voltage instability 

will occur. 

The corresponding node voltage changes to (26), and it is 

single solution but not multiple solutions: 
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When the branch current and node voltage are as variables 

the expressive information is more abundant, and can solve 

the problem difficult to resolve in the past. So the hybrid 

electric network equations can be applied to research in 

different fields of power system. 

VII. CONCLUSIONS 

The dimension of network equations increases while 

introduce node voltage and branch current as a state variable 

during power system reactive power optimization. At the 

same time the computational complexity increases because 

need to consider the constraint of node voltage and node 

injection power. So it brings some problems and difficulties 

compared with the conventional node voltage equations. But 

the above issues are handled through the improvement of the 

algorithm. Ultimately, conclude as follows: 

1) The power network equations can be expressed as a 

mixed form based on node voltages and branch currents, and 

the mixed equations contain more abundant information to 

improve the observability of the power system, and the 

calculation efficiency enhances also because the branch 

power flow can be calculated in the same computing cycle 

with node voltage;  

2) In order to simplify the solution of reactive power 

optimization the problem has been decomposed into two easy 

solving sub-problems, and then reduce the complexity of the 

problem and the dimension of the equations. So the 

computational efficiency has been improved.  

3) After comparing with the traditional method the 

proposed algorithm is closer to the global optimal solution 

because of the further correction to the state variable, and the 

node voltage error is smaller, too.  

4) Because the convergence of the proposed algorithm is 

good the mixed equation mathematical model based on node 

voltages and branch currents proposed in this paper can be 

applied to other optimization problems in the power system. 
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