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1Abstract—Massive Multiple-Input Multiple-Output 

(MIMO) is envisioned to be a strong candidate technology for 

the upcoming 5th generation (5G) of wireless communication 

networks. This research work presents a novel Compressed 

Sensing (CS) and Superimposed Training (SiT) based 

technique for estimating the sparse uplink channels in massive 

MIMO systems. The proposed technique involves arithmetic 

addition of a periodic, but low powered training sequence with 

each user’s information sequence. Consequently, separately 

dedicated resources for the pilot symbols are not needed. 

Moreover, to attain the estimates of the Channel State 

Information (CSI) in the uplink, the sparsity exhibited by the 

MIMO channels is exploited by incorporating CS based 

Orthogonal Matching Pursuit (OMP) algorithm. For decoding 

the transmitted information symbols of each user, a Linear 

Minimum Mean Square Error (LMMSE) based equalizer is 

incorporated at the receiving Base Station (BS). Based on the 

obtained simulation results, the proposed SiT-OMP technique 

outperforms the existing Least Squares (SiT) channel 

estimation technique. The comparison is done using 

performance metrics of the Bit Error Rate (BER) and the 

Normalized Channel Mean Square Error (NCMSE). 

 

 Index Terms—Channel estimation; Compressed sensing; 

Matching pursuit algorithms; Massive multiple-input multiple-

output. 

I. INTRODUCTION 

The exponential growth in the smart phones usage and 

data hungry applications has led to an unprecedented 

increase in the data traffic. It is predicted that by the year 

2020 there would be 500-folds increase in the data usage by 

mobile wireless networks [1]. The major hurdle to meet this 

high data rate challenge is the growing scarcity of the 

wireless spectrum for cellular networks. The research 

communities around the globe are exploring new 

architectures and technologies in order to find viable 

solutions to these issues. One of the possible solutions is to 

use the millimetre Wave (mmWave) spectrum, which is 

mostly un-utilized to the date [2]. Another important 

solution is to exploit the spatial domain by aggressively 
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applying Multiple-Input Multiple-Output (MIMO) 

techniques. Massive MIMO is one of such technologies, in 

which a Base Station (BS) equipped with a very huge 

number of service antennas is used to serve a comparatively 

smaller number of mobile users. It is envisioned to be a 

prospective candidate for emerging 5G communication 

networks due to substantial improvements in energy and 

spectral efficiency [3], [4]. However, to take full advantage 

of such gains, require precise knowledge of the Channel 

State Information (CSI). Usually, CSI is not available a 

priori and is estimated by employing some appropriate 

channel estimation methods. Because of the channel 

reciprocity in Time Division Duplexed (TDD) massive-

MIMO systems, channel estimation only in the uplink needs 

to be performed. Consequently, the obtained channel 

estimates can also be utilized for the downlink.  

It is an established fact in the modern scientific literature 

that certain communications channel conditions result in a 

sparse Channel Impulse Response (CIR) either in delay, 

angular or spatial domains. The most important feature of 

the channel is that the CIR vector has only few non-zero 

delay taps as compared to its total length. Examples of such 

channels include, but are not limited to channels used in 

aeronautical communications [5], acoustic channels for 

underwater communications [6], and wideband channels 

using high frequency [7]. The wideband MIMO channels 

exhibit both sparsity and common support [8]. It is also 

established that the CIR of mmWave communication 

channels is also sparse [9]. The a priori knowledge about the 

channel sparsity may be exploited effectively for estimating 

CSI.  

The existing research papers discuss many channel 

estimation techniques based on training, blind, and 

semiblind methods to estimate CSI of MIMO systems [10]–

[12]. Recently, channel estimation techniques based upon 

Superimposed Training (SiT) have attracted a notable 

attention of the research community because of their 

noticeable advantages over the counterparts [13]–[16]. Such 

SiT based techniques utilize the spectrum more efficiently 

as they do not require dedicated slots for pilots. Rather a 

periodic and low power training sequence is directly added 
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by the transmitter to the information bits. The receiver 

exploits periodic nature of training for CSI estimation. A 

multi-cell scenario is investigated in [17], where time 

multiplexed and SiT based pilot arrangements are compared 

using user sum-rate as a metric. The results demonstrate that 

superimposed pilot-based arrangement improves 

performance and has the capability for pilot 

decontamination in cellular MIMO systems [17].  

Over the span of past decade, Compressed Sensing (CS) 

[18], [19] gains considerable attention as a promising 

technique for sensing and reconstruction of signals that 

exhibit sparsity in some specific domain. By exploiting the 

sparse nature of the signal under consideration, CS theory 

successfully reconstructs the signal below Nyquist rate with 

fewer possible measurements. Inside the CS theory, there 

exists a framework of CS based iterative greedy algorithms 

to approximate the sparse solution, e.g., Matching Pursuit 

(MP) [20], Orthogonal Matching Pursuit (OMP) [21], etc. In 

MP algorithm, the global optimal solution is approximated 

by formulating locally optimal choices at each iteration, 

such that the residual error among the selected choices is 

minimized. In the existing literature, CS is efficiently 

utilized for obtaining channel estimates in the field of 

wireless communications (see, e.g., [22-24]). However, to 

the best of authors’ knowledge, a channel estimation 

technique utilizing spectrally efficient SiT along with CS 

based OMP for sparse massive-MIMO channels lacks in the 

existing literature. This research paper is comprised of the 

following novel contributions: 

1. The proposal of a superimposed pilots based technique 

for channel estimation of uplink massive MIMO 

channels; 

2. Considering the sparse nature of the channel vector, CS 

based greedy iterative OMP algorithm is exploited to 

obtain the channel estimates; 

3. The effects of variations in the ratio between power of 

pilot and information sequences and the channel sparsity 

level are quantified by performance metric of Normalized 

Channel Mean Square Error (NCMSE); 

4. The proposed estimation method is compared with an 

existing, but noteworthy SiT Least Squares (SiT-LS) [13] 

based method; 

5. To decode the transmitted symbols, an equalizer based 

upon Linear Minimum Mean Square Error (LMMSE) 

[25], is incorporated at the receiving BS. 

The rest of the proposed work is structured as follows. 

Section II presents the proposed system model. The details 

of the approach employed for generating the training 

sequences for each user are described in the Section IIIA. 

First-order statistics-based model for obtaining channel 

estimates is given in Section III-B. While Section III-C 

describes the existing SiT-LS channel estimation approach. 

The proposed SiT-OMP based channel estimation technique 

is discussed in Section III-D. In Section IV, an LMMSE 

equalizer for symbol detection at BS is presented. 

Simulation results, along with relative discussions, are given 

in Section V, whereas, proposed work is concluded in 

Section VI.  

II. SYSTEM MODEL 

The proposed system model for a multi-user MIMO 

system is detailed in Fig. 1. In this figure, N  is the 

transmitting mobile users, while M  is the number of 

elements in receiving antenna array. The uplink 

transmissions of N  users are assumed to propagate through 

a sparse MIMO channel. The channel has L  resolvable 

paths, among these Q  denotes the number of non-zero 

paths. The details of the Channel Estimator (CE) block are 

given in Section III. The channel estimator block uses the 

first order statistics [13] and OMP to estimate the CIR. After 

that, Training Effect Remover (TER) block is used to 

subtract the training sequence’s effect present in the 

received signal. Then, the resulting signal is an input to the 

equalizer that estimates the information signal based upon 

LMMSE principal. Let nb  represent the information 

sequence transmitted by 
thn  user. nb  is assumed to have 

zero mean and is mutually independent from the other 

1N  users. Hence, the vector representation of nb  is 

     
*

0 , 1 , , 1n n n nb b b k   b . The period of 

superimposed training sequence ( nc ) is P, such that 

   n nc k c k aP  . The vector representation of nc  is 
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Fig. 1  Proposed system model’s block diagram for uplink of massive 

MIMO system. 

After superimposing the training over information 

sequence, the resulting transmit sequence nx , can be given 

by 

 .n n n x b c  (1) 

After passing through the frequency selective MIMO 

channel,  nx  is received by 
thm  antenna element. It is 

subtracted from received signal. Let 
*

0 1,  ,  , L
nm nm nm nmh h h   

 
h  denote the CIR between 

thn  

user and 
thm antenna element. If, at instant k, the Additive 

White Gaussian Noise (AWGN) appearing at an antenna 

element m is   ,m k  the signal received by this antenna 

element is expressed as 

      
1

1 0

1 ,
N L

m nm n m
n

y k h x k k


 

     (2) 
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where y(k) represents the complete received signal by the 

 thm antenna array at k time and is given as 

       
*

1 2,  , ,, Mk y k y k y k   y such that 

      
1

0

,
L

k k k




  y H x η  (3) 

where H is the channel matrix corresponding to the tap of 

th
delay tap given by 

 

11 12 1

21 22 2

1 2

.

M

M

N N NM

h h h

h h h

h h h

 
 
 

  
 
 

 

H  (4) 

Given the parameters 

       
*

1 2, ,  ,   nk x k x k x k      x  and 

       
*

1 2 , , ,, Mk k k k     η the temporal 

sampling      
*

* *1 , ,k y k L y k    
 

y  can be 

obtained as 

    ( ) ,k k k y H x η  (5) 

where: 

        * * *
*

1 , ,, 2 ,k k L k L k       x x x x  (6) 

        * * *
*

1 , ,, 2 ,k k L k L k       η η η η  (7) 

and the convolution matrix, ,H  for the sparse channels is 

given by 
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III. PROPOSED OMP BASED METHOD FOR SPARSE MIMO 

CHANNEL ESTIMATION 

The first-order statistics used for the channel estimation, 

as in [13], is described in Subsection III-A and Subsection 

III-B. Whereas, the channel estimation based upon 

conventional SiT-LS and OMP are discussed in Subsection 

IIIC and Subsection-IIID, respectively.  

A. Superimposed Training Sequence Design 

Let   nc k denote the training sequence assigned to the 

nth mobile user, which has a distinct cyclic frequency 

 P PN  where .P Z  The  nc k  is represented as 

    2 /1
,0

,       ,
j i P kP

n i ni
c k c e k
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where 1j   . While 
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    (10) 

While choosing   ,nc k  the P  coefficients are non-zero, 

where P P . The sequence  nc k  is computed as below 

   ,
1

'
,
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j k
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c k c e k






   (11) 

where  , 2 1 /i n iN n P    . The coefficients 
'
,i nc  are 

selected in such way that 1 n N   and 0 1i P   . For 

computing   ,nc k a base sequence  oc k  is used, such that 

co(k) has a period of P  

  
 1 2 /

, 0
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.
P j i P k

i o
k

c c k e
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   (12) 

The sequence  1c k  is defined by repeating the periodic 

base sequence  oc k  N times. Hence,  nc k  for the nth 

mobile user is calculated as 

      2 / 1
1n

j P n k
n cc k eck





 . 

B. First-Order Statistics of the Received Signal 

The 
thk received symbol at 

thm  receive antenna element, 

denoted by   ,my k  has the statistical expectation 

  mE y k  given by 

 , ,
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where 
1 1 2 2, ,i n i n   and 1 2n n , so that 

 1 2, 0,1, , 1i i P   . Let nmd  be a vector, such that 
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Let  

*

,0 ,1 , 1
, ,ˆ ˆ,ˆˆ

nm nm nm nm P
d d d



 
 
  

d  be the mean-

square estimate of nmd  as given in [13]. The coefficients of 

,nmd can be expressed as follows 
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where K  denotes the count of all received symbols. When 
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K  , accordingly , , ˆnm i nm id d . The difference 

between ,nm id  and ,
ˆ ,nm id  is the error ,nm i . Thus, ,nm i  is 

given as 

 , , ,
ˆ .nm i nm i nm id d    (16) 

The estimation error in the calculation of ,nm i  results 

from the cumulative effect of (i) interference of 

superimposed training sequence of the desired user, (ii) the 

interference of superimposed training and information 

sequences of the other users, (iii) the AWGN noise. The 

vector form of (16) can be expressed as 

 ˆ ,nm n nmd C h  (17) 

where 

   ' ' '
0, 1, 1 ,

diag , ., ,n n n nP n
c c c


  C V  (18) 

In (18), nV  denotes the Vandermonde matrix. 

C. Least Squares Estimate 

From (18) the channel’s least square estimate can be 

obtained as in [13] 

   
1

SiT LS * *ˆ ˆ .nm n n n nmh d


  C C C  (19) 

In case of noise with non-zero mean, the channel can be 

calculated using the condition   1P L   and removing 

,0
ˆ
nmd  from ˆ ,nmd  and removing first row of   nC .  

D. Proposed OMP Channel Estimator 

According to the existing literature, it is well established 

that the massive MIMO channels exhibit sparse nature in 

angular, delay or spatial domain. Therefore, in the uplink 

communication scenario of massive MIMO, the frequency 

selective channel between 
thn  user and 

thm  BS antenna at 

the receiver is assumed to be Q  sparse, i.e., 

0nmQ h L‖ ‖ . The optimum solution to estimate the 

sparse channel vector from (18) is to use 0  norm, but 

0  norm is a computationally NP  hard problem. 

Therefore, the proposed method exploits CS based OMP 

greedy iterative algorithm to obtain the estimate of sparse 

channel vector from (18). The optimization problem to be 

solved can be casted from (18) as follows 

 
2 0

ˆ s. t.  .
nm

n nm nm nmmin Q h
h

C h d‖ ‖ ‖ ‖  (20) 

The proposed SiT based channel estimation algorithm 

exploiting OMP is presented as follows. 

Input: Matrix nC , vector ˆ
nmd , and sparsity Q.  

Step 1: Initialize residual vector ˆ
nmr d  and set .   

The set   contains the indices of all the columns of nC  

that have been utilized. So, initially this set should be empty. 

Step 2: While 
0nm Qh‖ ‖  (i.e., until sparsity constraint 

is not met). 

Step 3: Compute , ,
*

nm j n jh j   c r  (i.e., compute 

all the projections of the residual vector on to the columns of 

nC  that have not been utilized yet). 

Step 4: Choose ,arg nm j
j

i max h


  (i.e., pick the largest 

projection). 

Step 5: Update the index set   .i   

Step 6: Compute 
2

2
,arg m ˆ .innm n nm nm h C h d‖ ‖  

Step 7: Update the residual vector , .nm n nm r d C h  

Step 8: Assign ˆ .SiT OMP
nm nm

 h h  

IV. LMMSE EQUALIZER FOR SYMBOL DETECTION  

Once the channel estimates are obtained using the 

proposed technique, the transmitted symbols can be detected 

at the BS by using an equalizer. In the proposed system 

model, we have incorporated an LMMSE equalizer as in 

[25], for this purpose. As a priori, each user’s training 

sequence is known at the BS. The training sequence of each 

user is removed from the received signal as follows 

      
1

1 0

ˆ ,
N L

m m nm n
n

y k y k h c k


 

     (21) 

where ˆ
nmh  is 

th
 tap of the channel vector nmh . After the 

superimposed pilots are removed from the received signal, 

the resultant signal is then input to the equalizer for symbol 

detection. The weights, nw , of the LMMSE equalizer, as 

calculated in [25], are given below 

  
    

1
* 2

1 1 1

2 ˆ ,

e

n n
m L L 




    

 w HH I H  (22) 

where Le  represents the number of equalizer taps, I  is the 

identity matrix with dimensions e eL L ,   denotes the 

mapping delay, and the ith column of H  is represented by 

.
i

H  While H  denotes the convolutional matrix of 

dimensions  1e eL L L   . The estimated impulse 

response vectors of channels can be used to calculate nmH  

as follows 

0 1

0 1

0 1

0 0 0

0 0 0
.
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nm nm nm

L
nm nm nm
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L
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h h h
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H  (23) 

The information sequence transmitted by 
thn user can be 

decoded as 
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1

,
1 0

.
eLM

n nm i m
m i

b k w y k i


 

    (24) 

A hard decision mapper is utilized to calculate the 

estimates  ˆ
nb k  from   ,nb k where  nb k  are symbols 

modulated using Binary Phase Shift Keying (BPSK). 

V. SIMULATION RESULTS 

The simulated scenario consists of a massive MIMO 

communication system with 4N   single antenna users 

that are communicating in uplink with a BS having 64M   

antennas. Between the 
thn user and 

thm antenna at the BS, 

the channel vector nmh  generated for each user independent 

of the others. The length of the channel vector, i.e., number 

of resolvable multi-paths, represented by L , is set 14. The 

channel vector nmh is assumed to be Q sparse, such that the 

channel sparsity level is /Q L . Each user’s information 

sequence is assumed to be BPSK modulated with variance 

2
b  and zero mean. The low power training sequence of 

thn user  nc k  is assumed to be periodic with period 

15P  . The Training-to-Information Power Ratio (TIR) 

equal to be 2 2/c b  . The received signal is corrupted by 

AWGN. In the first simulation set up, the performance of 

proposed scheme with the change in channel’s sparsity level 

is investigated. In this regard, the graphs for NCMSE and 

BER, shown in Fig. 2, are obtained for varying sparsity 

levels. 

It is illustrated in Fig. 2 that for a Signal to Noise Ratio 

(SNR) of 10 dB, an improvement of 10 dB in NCMSE, and 

for a BER of 210 ,  an improvement of 6 dB in SNR is 

obtained for the proposed SiT-OMP technique for the 

channel estimation. The Fig. 3 investigates the effect of 

variations in TIR.  

Figure 3 shows that the increase in the TIR power ratio 

results in improved channel estimates. However, there is a 

tradeoff between the received signal SNR and TIR as higher 

values of TIR leads to degradation in SNR. Hence, an 

optimal choice needs to be made between TIR and SNR.  

 
(a) 

 
Fig. 2.  Effect of variations in channel’s sparsity level for SiT-OMP on 

NCMSE (a), on BER for 
2 2 3

4, 64, / 0.3, 10N M Kc b      and 

/ 3 / 14,5 / 14,7 / 15Q L  (b). 

 

Fig. 3  Effect of variations in 
2 2/c b   on the proposed SiT-OMP 

technique for 4,N  64,M   / 3/14,Q L  310 ,K  and 

2 2
/ 0.1, 0.3, 0.5c b    and 1.0.  

 
(a) 
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(b) 

Fig 4.  Performance of proposed SiT-OMP technique compared with the 

existing SiT-LS technique based on, (a) NCMSE (b) BER, for 4,N  

64,M   2 2/ 0.3,c b
    310 ,K  and / 3/14.Q L  

NCMSE and BER are set as performance metrics for 

performance comparison of the proposed SiT-OMP 

technique with the noteworthy existing SiT-LS technique for 

channel estimation, as shown in Fig. 4. At SNR of 10 dB, 

the NCMSE of suggested SiT-OMP technique gives a 

performance enhancement of about 25 dB, and at a BER of 

110 , the proposed SiT-OMP technique has a 10 dB 

performance improvement over SiT-LS. This significant 

enhancement in the performance is a result of considering 

the preceding knowledge of sparse nature of channel vector. 

VI. CONCLUSIONS 

Massive MIMO systems are foreseen to play a significant 

part in the emerging cellular communication networks 

because of their impressive gains in terms of order of 

magnitudes increase in data rates, and energy and spectral 

efficiency compared to the present-day networks. However, 

reaping these benefits require accurate CSI estimates. In 

TDD based massive MIMO systems, the channel reciprocity 

leverages the burden of obtaining the channel estimates only 

in the uplink rather than both for up- and downlinks. 

Moreover, it is established that massive MIMO and 

mmWave based channels exhibit joint sparsity in delay, 

angular or spatial domain. This research work proposes the 

use of compressed sensing in conjunction to the 

superimposed training for channel estimation in uplink of a 

massive MIMO system. The proposed SiT-OMP technique 

exploits the sparsity in massive MIMO channels. It is 

evident that the suggested SiT-OMP technique, when 

compared with the existing least squares-based channel 

estimation technique, has better performance in terms of 

NCMSE and BER. It is demonstrated that the channel 

sparsity of Q/L=3/14 the proposed SiT-OMP achieves a 

performance gain of 25 dB in NCMSE and 10 dB in SNR 

for a BER of 
110 over existing SiT-LS technique. It is also 

established that the proposed technique performs even better 

as the channel becomes sparser. Moreover, it is also 

discussed that there is a performance tradeoff between the 

TIR and SNR at the receiver. Hence, a suitable value of TIR 

needs to be selected for an optimum performance in SNR.  
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