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1Abstract—The goal of sparse FIR filter design is to minimize 

the number of nonzero filter coefficients, while keeping its 

frequency response within specified boundaries. Such a design 

can be formally expressed via minimization of l0-norm of filter’s 

impulse response. Unfortunately, the corresponding 

minimization problem has combinatorial complexity. 

Therefore, many design methods are developed, which solve the 

problem approximately, or which solve the approximate 

problem exactly. In this paper, we propose an approach, which 

is based on the approximation of the l0-norm by an lp-norm 

with 0 < p < 1. We minimize the lp-norm using recently 

developed method for signomial programming (SGP). Our 

design starts with forming an SGP problem that describes filter 

specifications. The optimum solution of the problem is then 

found by using iterative procedure, which solves a geometric 

program in each iteration. The filters whose magnitude 

responses are constrained in minimax sense are considered. The 

design examples are provided illustrating that the proposed 

method, in most cases, results in filters with higher sparsity 

than those of the filters obtained by recently published 

methods. 

 
 Index Terms—Digital filters; FIR filter design; lp-norm; 

Signomial programming; Sparsity. 

I. INTRODUCTION 

Finite impulse response (FIR) filters are used in many 

signal-processing applications. However, their 

implementation complexity is higher than the complexity of 

infinite-impulse-response filters with similar properties [1]. 

One technique for reducing the complexity is sparse-filter 

design [2]–[7]. 

The goal of sparse FIR filter design is to minimize the 

number of nonzero filter coefficients, while keeping its 

frequency response within specified boundaries. Such a 

design can be formally described as: 
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where h = [h0, h1, …, hN]T is filter’s impulse response, E(, 

h) is the approximation error,  > 0 is an acceptable upper 
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bound of the approximation error, and  is the union of 

frequency bands of interest. The measure ||||0, referred to as 

l0-norm, counts the number of nonzero elements in h, 

whereas ||||2, denotes l2-norm or l-norm, whichever is 

preferred in the design at hand. The l0-norm is not a proper 

norm. However, we use this name for simplicity.  

Additional criteria are sometimes added to (1), e.g., 

bounding the length of the impulse-response [8]–[10]. 

The problem in (1) is highly nonconvex due to the l0-

norm. Its exact solving requires combinatorial optimization 

as in [11]. However, several approximate methods have been 

developed. Many of them utilize l0-norm and estimate the 

positions of zero coefficients by using greedy algorithms 

[12], [13], integer programming [2], [14], iterative second 

order cone programming [15], iterative 

shrinkage/thresholding [16], and genetic algorithms [17]. If 

l0-norm in (1) is replaced by l1-norm, the filter is obtained 

with many small coefficients [5]. Some of them can be set to 

zero and then the design can be repeated by varying only the 

rest. This idea is used in iterative l1 methods described in [5] 

and [18]–[20]. The approximation of l0-norm by lp-norm 

with 0 < p < 1 has been considered in [21]. Such an 

approximation relaxes the problem in (1). However, the 

problem remains nonconvex and it is still difficult to solve. 

In this paper, we present a new method for the design of 

sparse symmetric FIR filters. The sparsity is promoted by 

using lp-norm with 0 < p < 1. To minimize this norm, we 

propose the signomial programming. We consider the filters 

whose magnitude responses are constrained in a minimax 

sense. We illustrate by examples that the proposed method 

results in filters with higher sparsity than those of the filters 

obtained by recently published methods. 

The paper is organized as follows. Section II briefly 

describes the signomial programming and its relationship to 

the geometric programming. Section III presents the 

proposed method for the design of sparse symmetric FIR 

filters. Section IV discusses key implementation aspects of 

the presented design. Finally, Section V provides several 

filters obtained by using the proposed method and their 

comparison with the recently published sparse FIR filters. 

II. SIGNOMIAL PROGRAMMING 

Signomial programing (SGP) is an optimization method 

that solves the problem [22]: 
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where x = [x1, x2, …, xn]T  ℛn, ckj  ℛ, akij  ℛ, and mk, k = 

0, 1, …, r, is the number of product terms in the objective 

function and in the constraints. 

If ckj > 0 for all j and k, and if mk = 1 for q + 1  k  r, the 

problem in (2) reduces to a geometric programing (GP) 

problem. Such a problem can be easily transformed into a 

convex problem, which can be solved globally [22]. 

Otherwise, the problem in (2) is difficult to solve. However, 

in recent years, iterative methods have been developed (e.g., 

see [23] and the references therein), which efficiently solve 

SGP problems. Here, we apply the method proposed in [23]. 

This method uses transformations and convexifications to 

convert the SGP problem into a sequence of GP problems 

whose solutions converge to the solution of the original 

problem. 

III. SPARSE FILTER DESIGN 

A. Problem Formulation 

The design of sparse FIR filter whose magnitude response 

is constrained in a minimax sense is given by the 

optimization problem: 
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where Ha(, h) is filter’s amplitude response, Hd() is 

desired amplitude response, and () is maximum 

acceptable approximation error. 

The l0-norm in the objective function in (3) can be 

approximated with the lp-norm as follows 
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Furthermore, the constraint in (3) can be approximated by 

a set of constraints evaluated on a finite frequency grid q, q 

= 1, 2, ..., Q, q  . By assuming 

 arg min arg min ,
p

p p


h h
h h  (5) 

and denoting dq = Hd(q) and q = (q), the optimization 

problem in (3) takes the form as expressed below: 
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The problem in (6) describes the design of FIR filter of an 

arbitrary type. For simplicity, we consider only the design of 

type-I FIR filters in further text, i.e., the filters with even-

symmetric impulse responses and even filter orders. Such 

filters are uniquely described by K = N/2 + 1 impulse 

response samples as in 

    1 2 1, , ..., , , ..., .
T T

K K K Nz z z h h h z  (7) 

By introducing z as the optimization variable, the problem 

in (6) takes the form 
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where: 

 ( , ) ,a q qH  z A z  (9) 

      1 2cos 2cos 2 ... 2cos ( 1) .q q q qK    
 

A (10) 

B. SGP Problem 

To write the above problem in a form of standard SGP 

program, simple manipulations are required. To ensure the 

optimization variables are positive, the substitution is made 

 , y z ρ  (11) 

where  = [, , ..., ]T is a vector with K equal positive 

elements sufficiently large to ensure y > 0. Using (11), the 

problem in (8) takes the form as: 

 

1 2min 2 2 ,

s. t. ( , ) , 1, 2, ..., ,

,

p p p

K

a q q q

y y y

H d q Q

  

 

     

  



y

y

y 0  (12) 

where 

 ( , ) .a q q qH   y A y A ρ  (13) 

The problem obtained is equivalent to:  
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The problem in (14) is recognized as an SGP problem 

with 2K variables and 2(K + Q) inequality constraints. 

C. Solving of SGP Problem 

We solve the problem in (14) by using the optimization 

method presented in [23]. The method referred to is able to 

solve a general SGP problem shown in (2). However, our 

problem is simpler because it does not contain equality 
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constraints. Moreover, our objective function contains only 

positive terms, i.e., it is a posynomial. 

For convenience, we describe here the optimization 

procedure from [23] tailored for SGP problem in (14). Let 

us first express the problem in a more compact form: 
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where 
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The functions fj(x), j = 1, 2, ..., 2(K + Q), are obtained by 

simple rearranging of the constraints in (14). Note that we 

left the constraints in a form fj(x)  0 instead of transforming 

them into a common SGP form fj(x)  1, because such a 

notation simplifies some of further expressions. The 

optimization procedure is given by the following algorithm: 

 

Step 0: Choose feasible point x(0) and 

solution accuracy  > 0. 

Step 1: Set r = 0. 

Step 2: Approximate original SGP 

problem with a GP problem 

around x(r). 

Step 3: Solve the GP problem to obtain 

x(r + 1). 

Step 4: If ||x(r + 1)  x(r)|| > , set r = 
r + 1 and go to step 2. 

Step 5: Return xopt = x(r + 1). 

 

The approximation in Step 2 is rather simple. Since the 

objective function in (15) is a posynomial, it remains 

unchanged. On the other hand, the constraints should be 

approximated by fj
*(x)  1, where fj

*(x), j = 1, 2, ..., 2(K + Q) 

are also posynomials. Following the procedure described in 

[23], each constraint in (15) is first written in a form 

 ( ) ( ),j jf f x x  (17) 

where fj
+(x) and fj

(x) collect the terms with aij > 0 and aij < 

0, respectively. Note that a0j is also a part of fj
(x) provided 

a0j < 0. The right-hand side of (17) is now approximated 

with only one positive term, i.e., with a monomial. It is 

performed by using arithmetic-geometric mean 

approximation [22], which, in our case, takes the form as 
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where ij(x) is an ith term in the jth constraint, Pj  {0, 1, ..., 

2K} is a set of indexes i, which appear in fj
(x), and 
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Using (18) and (19), we arrive at 

 ( ) ( ).j jf g x x  (20) 

Finally, the GP problem that approximates original SGP 

problem takes the form: 
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The obtained GP problem can be easily solved in Step 3 

by using an available solver for geometric programming, 

which can be found for example in GGPlab [24] and 

MOSEK [25]. We have used the latter. 

Geometric and signomial programming require positive 

optimization variables. On the other hand, the sparsity 

criterion pushes some components in t towards zero. The 

solvers handle this case correctly and return the optimum 

containing negligible values of such components. However, 

to shorten the design time, a constraint t  , where  = [, 

, ..., ]T, can be used in (14) instead of t > 0. Clearly, a 

sufficiently small  should be chosen to promote sparsity. 

We use the value of  = 1e  8. Note that t   is already a 

GP constraint and it can be simply incorporated into (21) as 

in: 
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IV. PRACTICAL CONSIDERATIONS 

The optimization method described in section III.C 

requires initial point that is feasible to the original SGP 

problem. An initial point, x0, consists of two parts, y0, 

representing the initial filter coefficients and t0, representing 

its sparsity. Therefore, the generation of an initial point 

starts with the design of initial filter. A nonsparse minimax 

filter approximates the desired response with a lower 

approximation error than does the sparse filter of the same 

order. Therefore, an initial filter suitable for the proposed 

design can be obtained by using Parks–McClellan algorithm. 

In our experiments, we generated the impulse response of 

the initial filter, h0, by using Matlab function firpm. We used 

unweighted design whenever possible. However, if unequal 

approximation errors are specified in various bands of 

interest, the initial filter can be generated using appropriate 

weighting factors. An initial z, denoted by z0, is obtained 

from h0 by using (7). 

The value of  is not critical. Assuming that z0 contains 

positive and negative components,  is obtained as 
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02 min ( ).    z  (23) 

An initial y, denoted by y0, is calculated from z0 and  

using (11). Finally, the initial sparsity is obtained as 

 0 01.1 ,  t z μ  (24) 

where || denotes absolute value calculated componentwise. 

Figure 1 shows the number of nonzero coefficients of 

three different low-pass filters obtained for various values of 

p. The filters of the 60th order are chosen with passband edge 

p = 0.3, stopband edge s = 0.5, maximum passband 

error p = 0.001 dB, and maximum stopband errors p = 

60 dB, p = 70 dB, and p = 80 dB. The optimization is 

run with  = 1e  8. Clearly, the number of nonzero 

coefficients decreases with the decrease of p reaching the 

value that is considered the optimum. Experiments sh ow 

that p = 0.1 is sufficiently low to obtain the optimum in most 

cases. 

 
Fig. 1.  Number of nonzero coefficients obtained for various values of p for 

60th order low-pass filters with passband edge p = 0.3, stopband edge s 

= 0.5, maximum passband error p = 0.001 dB, and maximum stopband 

errors s = 60 dB, s = 70 dB, and s = 80 dB. 

After a sparse filter satisfying the given requirements has 

been found, its magnitude response can be additionally 

refined. It is performed by running classic minimax design 

optimizing only nonzero coefficients whose positions are 

obtained in the sparse design. Thus, the final filter is 

obtained by solving the problem: 
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where C0, Cx  {1, 2, ..., K} contain the indexes of zero and 

nonzero components in z and wq = 1/q. 

V. DESIGN EXAMPLES 

To illustrate the features of the proposed method, three 

examples are provided. In all of them, Q = 10N and  = 1e  

8 are used. 

A. Example 1 

The first example illustrates the design of low-pass 

symmetric FIR filters with passband edge p = 0.3, 

stopband edge s = 0.5, maximum passband error p = 

0.001 dB, and maximum stopband errors s = 60 dB, s = 

65 dB, s = 70 dB, s = 75 dB, and s = 80 dB. The 

optimization is performed with p = 0.1. The initial filters are 

obtained by using Matlab function firpm with equally 

weighted passbands and stopbands. 

Table I shows the obtained positions of nonzero 

coefficients. They are given for the right-hand side of the 

impulse responses as defined in (7). The total number of 

nonzero coefficients denoted by LNZ is shown for our filters 

and for the filters presented in [19], which are obtained 

using the same specifications. Our filters exhibit higher 

sparsities in six cases, which are marked in bold, whereas in 

other cases the sparsities are equal to those in [19]. The 

obtained impulse responses are short. Moreover, they remain 

the same if filter orders increase. Figure 2 shows the right-

hand side of a typical impulse response, which is obtained 

for N = 60 and s = 75 dB. 

TABLE I. OPTIMUM POSITION AND NUMBER, LNZ, OF NONZERO 

COEFFICIENTS OF PROPOSED FILTERS WITH PASSBAND   [0, 

0.3], STOPBAND   [0.5, ], MAXIMUM PASSBAND ERROR P = 

0.001 DB, AND MAXIMUM STOPBAND ERROR S OBTAINED FOR 

INITIAL ORDER N, COMPARED WITH FILTERS WITH THE SAME 

SPECIFICATIONS PRESENTED IN [19]. 

  Proposed  [19] 

N s, dB Optimum position of nonzero coefficients LNZ LNZ 

60 -60 xxxxx0xxxx0xxxx0xxxx0x0000x0000 37 37 

70 -60 xxxxx0xxxx0xxxx0xxxx0x0000x000000000 37 37 

80 -60 xxxxx0xxxx0xxxx0xxxx0x0000x00000000000000 37 37 

60 -65 xxxxx0xxxx0xxxx0xxxx0x0000x0000 37 39 

70 -65 xxxxx0xxxx0xxxx0xxxx0x0000x000000000 37 39 

80 -65 xxxxx0xxxx0xxxx0xxxx0x0000x00000000000000 37 39 

60 -70 xxxxx0xxxx0xxxx0xxxx0xx000x0000 39 39 

70 -70 xxxxx0xxxx0xxxx0xxxx0xx000x000000000 39 39 

80 -70 xxxxx0xxxx0xxxx0xxxx0xx000x00000000000000 39 39 

60 -75 xxxxx0xxxx0xxxx0xxxx0xx000x0000 39 41 

70 -75 xxxxx0xxxx0xxxx0xxxx0xx000x000000000 39 41 

80 -75 xxxxx0xxxx0xxxx0xxxx0xx000x00000000000000 39 41 

60 -80 xxxxx0xxxx0xxxx0xxxx0xxxx000000 41 41 

70 -80 xxxxx0xxxx0xxxx0xxxx0xxxx00000000000 41 41 

80 -80 xxxxx0xxxx0xxxx0xxxx0xxxx0000000000000000 41 41 

 

The l0.1-norm approximates l0-norm closely. 

Consequently, it forces the sparsity well (Fig. 3). Figure 3 

shows the solution of SGP problem in logarithmic scale for 

the filter with N = 60 and s = 75 dB. It is clear that 

minimization of the l0.1-norm pushes some coefficients 

towards , whereas the rest of the coefficients take higher 

values. Such nearly bimodal distribution is similar to that 

expected from the l0-norm, which differentiates only zero 

from nonzero coefficients. Clearly, the coefficients near  

can be neglected. We consider a coefficient negligible if its 
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absolute value is less than 1.01. We use this threshold in all 

further examples. 

 
Fig. 2.  Impulse response samples of filter with passband   [0, 0.3], 

stopband   [0.5, ], maximum passband error p = 0.001 dB, and 

maximum stopband error s = 75 dB obtained for initial order N = 60. 

 
Fig. 3.  Absolute values of impulse response samples after solving SGP 

problem for filter with passband   [0, 0.3], stopband   [0.5, ], 

maximum passband error p = 0.001 dB, and maximum stopband error s = 

75 dB obtained for initial order N = 60. 

As expected, all of the obtained filters have smaller 

passband ripple and higher stopband attenuation than the 

non-sparse minimax filters with the same number of nonzero 

coefficients. Such a behavior is illustrated in Fig. 4.  

 
Fig. 4.  Magnitude response of sparse low-pass filter obtained for passband 

  [0, 0.3], stopband   [0.5, ], maximum passband error p = 

0.001 dB, maximum stopband error s = 75 dB and initial order N = 60 

having impulse response with 53 samples, of which only 39 are nonzero 

compared to magnitude response of non-sparse minimax filter with 39 

coefficients. 

The Figure shows the magnitude response of the sparse 

filter whose impulse response contains 53 samples, of which 

only 39 are nonzero compared to the magnitude response of 

the non-sparse minimax filter with 39 coefficients. Clearly, 

the improvement in magnitude is paid by an increase in the 

impulse response length. 

B. Example 2 

For the second example, we have chosen low-pass filters 

with the same passband and stopband, as well as with the 

same maximum stopband errors as in the Example 1. 

However, the maximum passband error is increased to p = 

0.5 dB. Sparse filters obtained using these specifications 

were presented in [20]. Here, we repeat the design by using 

the proposed method. The optimization is performed with p 

= 0.1. Feasible initial filters are obtained by using Matlab 

function firpm with passband and stopband weighting factors 

equal to 1 and p/s, respectively. 

The optimum positions and the total numbers of nonzero 

coefficients are shown in Table II. Compared to [20], the 

number of nonzero coefficients is improved for all filters, 

except for two cases, for which it remained unchanged. The 

positions of nonzero coefficients exhibit similar behavior to 

those in the Example 1. The responses are short, with the 

lengths that are not significantly influenced by the increase 

of the initial filter orders. The only exception is the filter 

with N = 80 and s = 65 dB, for which the result similar to 

the one with N = 70 and s = 65 dB is expected. 

TABLE II. OPTIMUM POSITIONS AND NUMBER, LNZ, OF NONZERO 

COEFFICIENTS OF PROPOSED FILTERS WITH PASSBAND   [0, 

0.3], STOPBAND   [0.5, ], MAXIMUM PASSBAND ERROR P = 

0.5 DB, AND MAXIMUM STOPBAND ERROR S OBTAINED FOR 

INITIAL ORDER N, COMPARED WITH FILTERS WITH THE SAME 

SPECIFICATIONS PRESENTED IN [20]. 

  Proposed  [20] 

N s, dB Optimum position of nonzero coefficients LNZ LNZ 

60 -60 xxxxxxxx0x0xx0x0x00000000000000 25 29 

70 -60 xxxxxxxx0x0xx0x0x0000000000000000000 25 29 

80 -60 xxxxxxxx0x0xx0x0x000000000000000000000000 25 25 

60 -65 xxxxxxxx0xx0x0xx000000000000000 25 29 

70 -65 xxxxxxxx0x0xx0xx00000000000000000000 25 29 

80 -65 xxxxxxxx0x0xx0x0x00xx00000000000000000000 29 29 

60 -70 xxxxxxxx0xx0x0xx000000000000000 25 33 

70 -70 xxxxxxxx0xx0x0xx00000000000000000000 25 33 

80 -70 xxxxxxxx0xx0x0xx0000000000000000000000000 25 31 

60 -75 xxxxxxxx0xx0x0xx0x0000000000000 27 33 

70 -75 xxxxxxxx0xx0x0xx0x000000000000000000 27 33 

80 -75 xxxxxxxx0xx0x0xx0x00000000000000000000000 27 33 

60 -80 xxxxxxxx0xx0x0xx0xx000000000000 29 37 

70 -80 xxxxxxxx0xx0x0xx0x0x0000000000000000 29 37 

80 -80 xxxxxxxx0xx0x0xx0x0x000000000000000000000 29 35 

C. Example 3 

The third example describes the design of various filters 

obtained using specifications in [9]. The paper referred to 

describes joint minimization of sparsity and filter order. Our 

method does not support such a design. However, we found 

the specifications in [9] interesting because these filters have 

high initial orders, steep transition bands, and low required 

approximation errors. 

The first five columns in Table III contain the 

specifications of seven different filters from [9], based on 

which we perform our design. We used p = 0.05 and we 
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started the optimization from initial filters obtained by 

Matlab function firpm with equally weighted passbands and 

stopbands. The last two columns in Table III show the 

comparison of our results and the results in [9]. We obtain 

the sparsity equal to that in [9] for four filters, worse for two 

and better for one filter. 

As a consequence of not optimizing the filter order, our 

impulse responses are longer than those obtained in [9]. 

However, we also run the optimization for the filter number 

5 with the initial order of 110, which is obtained as the 

optimum order in [9]. We obtain 105 coefficients as well. 

The positions of nonzero coefficients for this case are given 

by xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx0xxxxxxxxxxxxx0 

xx0xxxxxxx. 

TABLE III. NUMBER OF NONZERO COEFFICIENTS, LNZ, OF 

PROPOSED LOWPASS FILTERS WITH PASSBAND EDGE P, 

STOPBAND EDGE S, AND PASSBAND AND STOPBAND ERROR  

OBTAINED FOR INITIAL ORDER N, COMPARED WITH FILTERS 

WITH THE SAME SPECIFICATIONS PRESENTED IN [9]. 

Proposed [9] 

Filter 

No. 
N p s  LNZ LNZ 

1 160 0.12 0.18 0.0010 105 103 

2 184 0.12 0.18 0.0008 107 107 

3 184 0.22 0.28 0.0010 85 85 

4 200 0.22 0.28 0.0010 85 85 

5 200 0.325 0.385 0.0010 105 107 

6 200 0.325 0.385 0.0005 121 121 

7 200 0.0436 0.0872 0.00023 187 183 

VI. CONCLUSIONS 

The signomial programming is able to optimize 

polynomial objective functions. We proposed the application 

of this technique in problems that minimize lp-norm with 0 < 

p < 1. In particular, we presented the method that utilizes the 

signomial programming in the design of sparse symmetric 

FIR filters whose magnitude responses are constrained in a 

minimax sense. The presented method results in filters with 

similar or higher sparsity than those of the filters obtained by 

recently published methods. 

The results obtained suggest that the proposed method can 

be extended to the design of sparse nonlinear phase filters, 

as well as to the design of sparse IIR filters. 
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