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Abstract—We explore the possibility of revealing the P300 

event-related potential by means of a dedicated method that is 

both fast and reliable. It involves a lifting scheme based on a 

variant of Haar non-linear wavelet and a decision criterion 

based on a measure computed after the information linked 

with the P300 potential were obtained from the EEG signal. 

Some actual results are presented, for comparison purposes, 

involving the signals given in a well known database of EEG 

recordings. 

 
Index Terms—Electro-encephalographic signal, P300 event-

related potential, brain-computer interface, lifting scheme, 

non-linear Haar wavelet. 

I. INTRODUCTION 

Brain computer interfaces take advantage of the 

possibilities of feature extraction from the electro-

encephalographic signals (EEG). One of these features is the 

P300 event-related potential. Paradigms based on the P300 

event-related potential were involved in brain-computer 

interfaces mostly due to their simplicity and efficiency. 

There are also applications involving lie detection based on 

the same feature of the EEG signal. This is the reason why 

the detection of the P300 potential draws a lot of attention. 

The essential parts of a brain-computer interface are the 

algorithms that permit the feature extraction from the EEG 

signal and the classifiers that actually reveal the user’s 

intentions; without them any decision regarding the response 

of the subject to a certain stimulus is quite impossible. There 

are also a few requests that must be fulfilled by these 

components of the brain computer interface: they must be 

fast, efficient and reliable. Achieving this depends on the 

chosen paradigm, the method preferred for the detection of a 

certain feature that is present (or not) in the EEG signal as a 

subject’s answer to an already known stimulus and the 

possibilities to classify accurately the results of the 

detection. 

Different paradigms for brain computer interfaces were 

developed, both auditory and visual; among them the so 

called P300 speller is widely known due to its ease of 

implementation and to the type of response of the subject, 
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that allows classifying the answer without further 

processing, as soon as the correct detection is achieved, [1]. 

Recently new methods based on non-linear operators 

were introduced in the analysis of complex signals. It is 

already known the fact that the EEG falls in this category 

and this is one of the reasons its features extraction is not 

always a straightforward task. This paper will centre on a 

specific feature of the EEG signal, namely the P300 event-

related potential that is used in several paradigms 

implementing brain computer interfaces, but is not limited to 

them, [2], [3].  

Several methods were used in the P300 event-related 

potential detection. Among them are those that investigate 

the frequency content of the EEG signal with an elicited 

P300 [4]–[7], the time behaviour [8], the time-frequency 

dependent components [9], [10] or imply the wavelet 

transform to analyse the signal [11], [12].  

In what follows we shall briefly remind some essential 

features regarding the P300 event-related potential; next the 

mathematical background on which our method of detection 

relies and the data set involved in our research will be 

presented. The subsequent part regards the actual results 

with a focus on our contributions, followed by a brief 

discussion; the last one is devoted to the conclusions and 

possible future research topics.  

II. THE VARIABILITY OF P300 EVENT-RELATED POTENTIAL 

The P300 event-related potential is a deflection found in 

the EEG signals acquired on specific zones of the scalp, 

elicited when a certain stimulus, with a rare probability of 

occurrence, is presented to the subject under investigation. 

Usually the involved zones are central - Cz, parietal - Pz, 

frontal - Fz, central-parietal- CPz and central C1-C9, named 

according to the international “10-20”electrodes system. The 

main problem that needs to be surpassed when trying to 

detect the P300 potential is the great variability of this 

feature of the EEG signal. Many factors may influence the 

rate of successful detection; among them there are natural, 

physical and induced ones, as stated almost exhaustively in 

[13] and [14]. The variability of the P300 led to different 

approaches for its detection, each one of them reflected by 

the methods and references mentioned before. It is worth 

noticing that in spite of its high variability, the P300 impulse 

has also two features that are supposed to be quite stable: the 
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moment of appearance (as a mean value, approximately 300 

milliseconds after the stimulus manifestation) and its basic 

shape, a positive deflection of the EEG signal. Our method 

of detection is based on these characteristics. 

III. COMPUTATIONAL BACKGROUND 

In what follows we shall present the mathematical 

background that we used for our method of P300 detection. 

It is based on an adapting lifting scheme first introduced by 

Sweldens in [15]–[17] and generalised by Goutsias and 

Heijmans under the name of general wavelet decomposition 

scheme in [18]–[21]. The main advantage of this option is 

the possibility to choose among a vast range of non-linear 

functions and therefore a good chance to offer a solid 

compromise between accuracy and processing speed. 

Because our goal is to detect the P300 event-related 

potential, we chose the simplest function that proved to give 

excellent detection results and that assured the fastest 

processing speed, since this is an important request for a 

brain computer interface. 

Briefly, lifting may be used to develop wavelet like 

decompositions of a signal in the nonlinear case. The 

method is based on two kind of operators, named analysis 

and synthesis operators, that are capable of splitting a time 

dependent, discrete signal, into parts containing equal 

number of samples, according to a “rule” (in fact, a function 

that may be, but usually is not, linear). The splitting 

operation evidences either the details of the input signal or 

its global behaviour. This can be completed in several steps 

and each in depth step is justified by the information one can 

obtain versus the time needed to perform the calculations. 

The above observation led to the conclusion that the best 

suited function for the job is the one that is simple (and 

therefore fast when applying it) and accurate enough to 

promise a good detection rate of the P300 event-related 

potential. This can be achieved only in conjunction with an 

adequate decision criterion designed to conclude upon the 

absence or the presence of the potential. 

We shall now follow reference [21] for a concise 

discussion of the algorithm used in our method. Let us 

consider a family of signal spaces Uj and three families of 

operators: signal analysis operators αj and detail operators ωj 

that map Uj into Uj+1 and Uj into Wj+1 , respectively. There 

are also synthesis operators σj that perform the reverse 

procedure, mapping Uj+1× Wj+1 into Uj, so that the 

reconstruction is perfect, i.e. σj(αj,ωj)=1j, where 1j denotes 

the identity operator on Uj+1. These operators were outlined 

for the sake of completeness since our method does not 

involve any reconstruction of the signal. The analysis and 

the detail operators are the ones that deliver the features of 

interest of the signal. Our method is based only on the 

analysis operators since the P300 potential has a shape that 

is evidenced by the global behaviour during several 

hundreds of milliseconds and not by the details that are 

rather induced by noise.  Each step of the algorithm splits 

the signal in two parts: one contains an approximation of the 

signal that reflects its essential features while the other 

includes the details. This approximation signal is used in our 

study for the P300 detection. If several steps are performed, 

one may obtain the following recursive scheme that 

decomposes the initial signal s0 into approximation s1 and 

detail d1 signals, then the approximation signal s1 is split 

into s2 (approximation) and d2 (detail) signals and so on, as 

presented in formula (1) – the “↔” sign denotes the 

possibility of decomposition/reconstruction of the signal 

�� ↔ [��, ��] ↔ [�	, �	, ��] ↔ [�
, �
, �	, ��] ↔⋯ [�� , �� , ��
�, ⋯ ��] ⋯ (1) 

The above sequence is generated applying the following 

operators: α (analysis), ω (detail) the last one, σn, being used 

to perform the reverse operation in case this is needed: 

 � ���� = ������ ∈ ����, � ≥ 0,���� = ������ ∈ ����, � ≥ 0,�� = �������, �����, � = � − 1, � − 2, ⋯ 0. (2) 

From the point of view of our method an adequate choice 

of the analysis operator is the one that may evidence the 

P300 event-related potential in its essential feature: the 

shape. It can be proved that if the signal analysis operator α 

is chosen as the maximum value between two consecutive 

samples of the signal 

 ����� = max��	� , �	����,    (3) 

while ω, the detail analysis operator, is the difference 

between the same two consecutive samples 

 ����� = �	� − �	���. (4) 

The perfect reconstruction is possible since all the 

conditions imposed, as mentioned in [20] and [21], are 

fulfilled. 

It is worth noticing that in formula (3) it is possible to 

change the “maximum” operator with the “minimum” one 

 �′���� = min��′	� , �′	���� (5) 

and, as a result, one is able to obtain another recursive 

scheme like the one given by (1). This choice of functions is 

identical with the one known under the name of 

morphological Haar wavelet, [21], which is a variant of the 

Haar wavelet, [22]. 

Both functions are equally possible and the decision to 

use one of them (or both) depends on the task to be 

performed: while ours refers to the detection of a positive 

potential, we chose the mean value of the two signals 

obtained after the operations in (3) and (5) were performed.  

IV. THE DATA SET 

The data set used to illustrate our method was the one 

described in [23] and [24]. This choice was made because it 

was already used to validate the detection results obtained 

by other researchers and therefore could provide adequate 

feedback for our method. We will now remind, in brief, the 

paradigm and the conditions of the experiments that 

generated the data set.  

The signals that were used in this study were collected by 

means of an international “10-20” system of electrodes, as 

described in [25], placed on the subject’s scalp. A Farwell-

Donchin paradigm, [1], [26], was used to collect the data: 
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the user was presented on the computer screen with a 6 by 6 

matrix of characters; then, the subject was asked to focus his 

attention on characters in a word that was chosen in 

advance; each character of the word appeared on the screen 

in their initial succession. The rows and columns of the 

matrix were successively and randomly intensified at a rate 

of 5.7 Hz, and two out of 12 intensifications of rows or 

columns contained the desired character (one in a particular 

row and one in a particular column). The responses evoked 

by these infrequent stimuli are different from those 

generated by the ones that did not contain the desired 

character, and they are obviously the P300 responses. The 

sampling frequency used to acquire the EEG signals was 

240 Hz, as also stated in [24]. 

V. THE DECISION CRITERION 

To identify a P300 event-related potential, beyond the 

algorithm presented above, another element is needed to be 

certain if it was indeed elicited or not: a decision rule. It 

allows measuring the possibility of P300 appearance but 

also the confidence one may have in the obtained result. 

Choosing such a rule proved to be a challenging task 

because the EEG signals differ significantly according to the 

place they were acquired, the placement of the reference 

used in the experiment, the noise and the artefacts owed to 

the other physiological signals that interfere with them 

(most handy example: ocular artefacts) not to mention all 

the factors considered in [14]. We decided to normalise the 

signals obtained after the final step in which operators given 

in (3) and (5) were applied. We extracted the average value 

m of the initial EEG signal, computed for the entire 

recording from each signal s2k that was obtained, so that 

each one of them should have approximately zero mean 

value (i.e. zero centred). In this manner the presence (or the 

absence) of the P300 potential is referenced to zero. 

Furthermore, a time interval (t1, t2) must be chosen as a 

possible time window where the event-related-potential is 

expected to appear. This was not so difficult to decide for t1 

since usually P300 was expected to be elicited usually not 

less than 300 milliseconds after the stimulus; for the upper 

limit we have considered 400 milliseconds as a value that 

should give significantly satisfactory results. It is worth 

mentioning the fact that small deviations of the real signal 

with an elicited P300 from the above time limits should not 

interfere with the detection if one computes the area A2k 

delimited by the k-th decomposition of the initial signal  s2k 

and the time axis between the two already mentioned time 

limits 

 '	( = ) ��	( − *��+,-./	,-./� .  (6) 

In (6) m denotes the average value computed for the 

whole EEG recording, while smpl1 and smpl2 are the 

corresponding samples of the signal for the initial time 

interval in the case of the k-th decomposition level. 

Because the signal was already centred on zero, the 

presence of the potential is evidenced by a positive value of 

the area, while the missing one is indicated by a negative 

value.  

It is also important to observe the need of the decomposed 

signal. The area given by (6) is computed using the sampled 

signal that is the electroencephalogram. Therefore 

computing the area in (6) with constant time divisions is 

reduced to summing the samples and, in the end, 

multiplying it with the time division. In fact, for uniform 

sampled signals acquired with the same sampling rate, 

comparison is possible summing just the samples of the 

EEG signal 

 '	(~ ∑ ��	( − *�,-./	,-./� . (7) 

To decide if the P300 was elicited or not, due to the 

relatively small time interval allowed (300 to 400 

milliseconds), every sample that may be influenced by 

perturbations counts and this is why it is desirable to get a 

global behaviour that is evidenced by the approximation 

signal; this kind of signal is obtained when applying each 

level of decomposition of the lifting scheme. 

VI. RESULTS 

Let us recall the fact that for the data used in our study the 

sampling frequency was 240 Hz and the standard length of a 

recording was approximately one second. Therefore each 

recording was 240 samples long. Bearing in mind that we 

were interested only in the time interval t1=300 ms and 

t2=400 ms, transposed in samples, this time interval led to 

samples of interest between 72 and 96 in the case of the 

initial signal. 

We shall focus just on one channel of the EEG signal to 

present our results, namely the Fz; we made that choice 

because the P300 event-related potential may be evidenced 

here, but this is not the most used channel (Pz and Cz are far 

more used and probably give better results). Nevertheless 

we shall prove that our method is suitable and provides 

excellent results even in this marginal case. 

We used averaged signals both for the elicited and the 

missing P300 for all the 15 trials; an illustration of these 

signals, as they were initially recorded, may be seen in Fig. 

1 and Fig. 2. Note the shape of the signal between samples 

72 and 96: there is an obvious peak when P300 is present 

(Fig.1). 

First, each signal was analysed using two levels of 

decomposition by means of the lifting scheme based on the 

morphological Haar wavelet with the “min” function given 

by (5). The first level in the case of the elicited P300 led to 

the components for the approximation signal and the detail 

signal that are presented in Fig. 3 and Fig. 4. It is worth 

remembering that for these signals the initial [300ms, 

400ms] time interval corresponds to samples between 

72/2=36 and 96/2=48 because we are dealing with the first 

level of decomposition. The second level is presented in Fig. 

5 (for the approximation signal) and 6 (for the detail signal). 

Here the samples corresponding to the time interval of 

interest are between 18 and 24. In both cases the scales of 

amplitude for the detail components are significantly lower 

than those of the approximation ones. 
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Fig. 1.  The EEG signal (in µvolts) vs. sample number for the Fz electrode 

with elicited P300 event-related potential. 

 
Fig. 2.  The EEG signal (in µvolts) vs. sample number for the Fz electrode 

without elicited P300 event-related potential. 

 
Fig. 3.  The first level of the decomposition for the elicited P300: the 

approximation component (in µvolts) vs. sample number for the “min” 

function for the Fz electrode. 

 

Fig. 4.  The first level of the decomposition for the elicited P300: the detail 

component (in µvolts) vs. sample number for the “min” function for the Fz 

electrode. 

The first attempts to apply the lifting scheme with the 

“min” function showed that our method gave good results in 

the case of non-elicited P300 but poor ones for the other 

case.  

 

Fig. 5.  The second level of the decomposition for the elicited P300: the 

approximation component (in µvolts) vs. sample number for the “min” 

function for the Fz electrode. 

 
Fig. 6.  The second level of the decomposition for the elicited P300: the 

detail component (in µvolts) vs. sample number for the “min” function for 

the Fz electrode. 

 
Fig. 7.  The first level of the decomposition for the elicited P300: the 

approximation component (in µvolts) vs. sample number for the “max” 

function. 

 
Fig. 8.  The second level of the decomposition for the elicited P300: the 

approximation component (in µvolts) vs. sample number for the “max” 

function. 
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That led us to the decision of using the other function, 

“max”, given in (7), as shown below, in the case of the 

elicited P300, only for the approximation components for 

the first level, in Fig. 7, and the second one in Fig. 8. 

The results showed the reverse situation: the detection 

was excellent when the P300 potential was present but 

rather poor in the case of its absence. To cure this we 

averaged the two components and with this choice we have 

obtained a rate of success of 100% for the detection of the 

presence (or the absence) of P300 event-related potential in 

the case of the averaged signals for all the electrodes that 

were usually involved in decision making. Figure 9 depicts 

the three signals (“min” function, “max” function and the 

averaged one) for the second level of decomposition in the 

case of the elicited P300. 

The fundamental nature of this choice resides in the fact 

that the two initial functions “min” and “max” smoothed the 

recording of P300 both from beneath and above and 

applying the average of their result better revealed the 

elicited P300. 

To be absolutely certain of a correct detection one may 

impose a threshold for the value of the computed area but 

obviously this option leads to more computations; 

nevertheless our results based on averaged signals showed 

no need for such a decision, at least for the recordings used 

to validate our research. 

 
Fig. 9.  The second level of the decomposition for the elicited P300: the 

approximation component, the “max” function (dashed), the “min” function 

(dash-dot) and the average (continuous). 

VII. CONCLUSIONS 

In spite of the fact that for the detection purpose usually 

an averaged signal is used, we tried to apply our method to 

recordings containing the average of 15 signals. Let us 

define the rate of success as the number of successful 

detections of the presence or the absence of the P300 event-

related potential divided by the total number of attempts. 

This rate of success was 73% for the signals from Cz and Fz 

electrodes, 63% for CPz and Pz and 50% for Oz. It must be 

mentioned that these results were obtained with recordings 

that supposed to be of a certain type regarding the presence 

or the absence of the P300 potential, but they were not 

priory classified; it is well known the fact that the 

appearance of the P300 depends on many factors and not all 

the subjects always elicit one when the stimulus is present.   

Another observation was that in the case of the wrong 

detection of an individual recording the average function 

acted upon the vicinity of zero and a certain amount of 

emphasising on the min function (in the case of the non-

elicited P300) or max function (in the case of the elicited 

one) could led to far better results since more than 60% of 

the files were “nearly” misclassified (i.e. the computed area 

was in the [-0.5, 0.5] interval) when false detection 

occurred. This led to the conclusion that for individual 

recordings one may adjust the average function used in the 

detection according to the specification given by a certain 

subject and recording environments that influence the 

acquired signal, introducing both the “min” signal and the 

“max” signal in a weighted manner. 

Our method must be compared to the ones that use the 

wavelet transform of the EEG signal; the main difference is 

the way in which the decomposed signal is obtained. 

Dealing only with comparisons between consecutive 

samples to obtain the higher levels of decomposition and by 

choosing the non linear function that “smoothes” the details, 

the proposed method is more efficient. The complexity of 

the computations is also lower than in the case of the 

wavelet transform. The decision criterion, based in the case 

of the classical wavelet transform on the comparison 

between two coefficients is replaced in our study with a 

comparison to zero of a quantity that consists in a sum of 

already known samples. Because the time interval of interest 

is rather short and the level of decomposition is no more 

than two, the computing time needed to perform the task is 

overall smaller than in the case of the linear wavelet 

transform, no matter the mother wavelet used. 

We focused our efforts to develop a method for the 

detection of the P300 potential seen as a feature of the EEG 

and not to a whole BCI system (that would require an 

additional classifying algorithm, e.g. the one described in 

[27] and a strategy to choose the adequate electrodes; 

therefore the classifying part was not our concern). There 

are two ways in which the rate of success may be further 

improved: 1) averaging the EEG signals of the same type 

(with or without the P300 event-related potential) and 2) 

using a different percent mix (and not the average) of the 

signals obtained after the “min” and “max” functions were 

applied. 
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