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Abstract—This paper describes the human stress 

identification using multiple physiological signals. The 

Electrocardiogram (ECG), Electromyogram (EMG), Heart 

Rate Variability (HRV), Galvanic Skin Response (GSR), and 

Skin Temperature (ST) are the multiple physiological signals 

acquired and derived from the 40 subjects using mental 

arithmetic task -based stress-inducing stimuli. To compute the 

stress induced in the participated subjects, the wavelet 

denoising, digital elliptic filtering, ectopic beat removal 

algorithm, Lomb-Scargle (LS) periodogram, Fast Fourier 

Transform (FFT), and startle detection algorithms are the 

signal processing methods used to extract the various features 

of five physiological signals. K Nearest Neighbour (KNN) and 

Probabilistic Neural Network (PNN) are the nonlinear 

classifiers used to discriminate the normal and stress states of of 

the subjects. In order to strengthen the multiple evidence-based 

stress identification system, we investigated the Higher-Order 

Statistical (HOS) features in HRV signals that successfully in 

various applications in cardiac fault detection. Similarly, to 

evaluate the efficacy of the electromyogram (EMG), galvanic 

skin response (GSR), and skin temperature (ST), the existing 

statistical features are considered with a large number of data 

samples in stress research. The results indicate that the 

proposed HOS of HRV performed well, with accuracy up to 

93.75 %. In other extreme, 76.25 %, 71.25 %, 70.32 %, and 

75.32 % were obtained in ECG, EMG, GSR, and ST, 

respectively. Finally, this study concludes that multiple 

physiological signal-based subject-independent analyses 

incorporated and its algorithm gives the reasonably improved 

detection rate.  

 
Index Terms—Human stress, multiple physiological signals, 

mental arithmetic task,   

I. INTRODUCTION 

Identifying the human stress remains a major challenge in 
the computational field. Stress can be defined as lack of 
coordination with the human body and mind, and which can 
be controlled by relaxation as well the suitable management 
techniques. Human stress results in the loss of performance, 
emotional stability and, in some cases, might lead to 
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depression, burnout and, in severe cases, suicides. Burnout is 
caused by continuous exposure to stress without any 
relaxation of the mind and body. Preventing burnout is 
necessary to reduce stress levels using relaxation methods. 
Presently, Questionnaire based counselling is a familiar 
method to identify stress. But these questionnaires might be 
irrelevant results when answered by a stressed human or 
subject. Only psychological or medical experts can 
determine whether a human is under stress or not. In general, 
people under stress often not interested in consulting the 
psychologist, taking medication or adopting appropriate 
management techniques. In such cases, stress becomes part 
of their lifestyle; therefore, working environment, family 
problems and other socioeconomic factors are the stress-
inducing factors.  A simple scientific tool is necessary to 
indicate their stress levels without help from any medical 
expert. Thus, this research is carried out for the last two to 
three decades.  

From 1989 onwards, the stress identification research was 
started to induce and measure the stress using the Stroop 
colour word test, biological signals and biochemical samples 
[1]. Consecutively, the cardiac- and muscle-related signals 
were investigated along with biochemical samples using 
mental arithmetic tasks and the Stroop colour word test [2], 
[3]. In 1994, the EMG has a significant variation in stressed 
individuals during mental arithmetic task [4]. Until 2000, the 
Stroop colour word test and mental arithmetic task were 
frequently studied by various researchers. The stress 
inducement and computation are usually done with the 
stress-inducing stimuli in a laboratory environment. So far, 
the mental arithmetic task, Stroop colour word test, cold 
presser test, computer games, and public speaking task have 
been the stimuli used [1]–[3], [5]. The biochemical analysis 
and results are a major interest in the early in the 19th 
century. Later on physiological became as a major interest 
for developing stress assessment system. In such cases, 
ECG, HRV, EMG, GSR, ST, blood volume pulse (BVP), 
blood pressure (BP), and respiration rate (RR) are repeated 
or new measures of stress [2], [3], [5]–[7]. In 2004, the 
driver stress level was computed using bio signals, and 
produced a maximum classification accuracy of 97% in a 
highly subject-dependent study [6]. In another study, HRV, 
GSR, ST, BVP, and PD were used to identify the stress 

Multiple Physiological Signal-Based Human 
Stress Identification Using Non-Linear 

Classifiers  

P. Karthikeyan1, M. Murugappan1, S. Yaacob1 

1
School of Mechatronics Engineering, Universiti Malaysia Perlis,  

Campus Putra Pauh, 02600, Arau, Perils, Malaysia 

karthi_20910@yahoo.com 

http://dx.doi.org/10.5755/j01.eee.19.7.2232 

80



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 19, NO. 7, 2013 

 

detection rate using a computerised Stroop colour word test 
[7], with the results indicating 90.02% in subject-dependent 
approaches. The features in the physiological signals have 
been found to be different in the stressed individual than the 
normal human being. However, the identification of a 
stressed state in comparison to the normal state is recent in 
this research.  

In this work, we targeted to identifying the stressed 
subjects an independent analysis using the mental arithmetic 
task with the help of advanced signal processing for five 
physiological signals. The paper is organised into five 
sections. Section II deals a brief introduction used in the 
stress assessment research. Section III describes the 
proposed methodology and its related materials and 
methods. Section IV elaborated the results and its 
discussion. Finally, section V concludes the results.    

II. STRESS DETECTION USING PHYSIOLOGICAL SIGNALS 

A. Heart rate variability 

HRV remains one of the dominant indicators of human 
stress compared to other physiological signals. Previously, 
several studies have considered the HRV signals for the 
identification and analysis of stress [1], [2], [6], [7]. More 
often these studies have been laboratory-based, rather than in 
real time. Our previous study concludes the dominant 
stimuli, physiological signals and lack of signal processing 
methods are the major impediments in this work [8]. The 
High Frequency [HF] and Low Frequency (LF) range of 
HRV is frequently investigated and is one of the reliable 
measures. How long the heart rate was elevated due to stress 
is measured, which leads to computational problems. 
Because the HRV is unevenly sampled signal, this leads to 
the unknown sampling frequency. Usually, the duration of 
heart rate signals is important to the efficacy of the 
frequency band analysis. Therefore, the determination of the 
duration of the sample as well as sampling frequency or 
suitable methods required to process the data. Our previous 
study was intentionally motivated to solve these two 
problems using an LS periodogram after applying the 
ectopic beat removal algorithm [9]. 

B. Electrocardiogram 

The ECG is a well-known physiological signal, but 
limited addressed the stress using the ECG signal. So far, the 
HRV signal has been the dominant measure of stress.  
Recently, studies have started to use an ECG as a measure in 
emotion classification research [10]. Normally, useful 
information in an ECG exists below 100 Hz.  Emotion 
assessment studies are done in two frequency ranges: 0–100 
Hz and 0–10 Hz [10], [11]. The car driver stress and 
emotions were identified in a 10s window of a 0–100 Hz 
signal, and a classification accuracy of 79% and 76% using 
SVM and KNN classifiers was reported [10]. Similarly, a 0–
10 Hz signal was separated into eight sub-bands with equally 
spaced non-overlapping intervals, and a classification 
accuracy of 75% was obtained using an extended linear 
discriminate classifier [11]. Usually, in HRV, 0–0.5 Hz is 
considered to analyse the stress due to autonomic nervous 
system (ANS) relationships.  

C. Electromyogram  

Trapezius muscle in the shoulder is often used in the 
identification of involuntary activities such as stress [4], [6]. 
Muscles consist of voluntary and involuntary contractions. 
Voluntary muscle movement is finely controlled by the brain 
through the autonomic nervous system (ANS). Similarly, 
involuntary muscles such as cardiac muscles and blood 
vessels as well as muscles in digestive and reproductive 
systems undergo involuntary movements that poor in the 
control of the brain. This involuntary muscle movement also 
generates an action potential during the stress state. This 
potential in facial and Trapezius muscles can be measured 
[12]. Previously, Healey studied the 0–16 Hz of an EMG 
signal of driver stress, and Lundeberg et al. studied the EMG 
signal in the Trapezius locations of the shoulder and 
observed measurable changes [3], [6].  

D. Galvanic skin response and skin temperature 

GSR is one of the effective measures in stress assessment 
research.  Previously, GSR has been measured several 
laboratories based [7], [13] and real time driver stress-level 
computation [6]. During stress, the GSR signal has the 
startle response, which is occurring only in extreme stimuli 
or demand. During the stress assessment, external or internal 
demand is created to evoke the startle potential [6]. The 
fingers, arc and toes on the foot are ideal locations for skin 
conductance. Usually, the GSR is measured in two fingers.  

ST is the simplest measure that is used to estimate 
changes in affective states such as stress and emotions [7], 
[14]. Though, ST measurement and analysis are easier than 
other physiological signals [15]. A limited number of studies 
have investigated the relationship between stress and ST [7], 
[15]. In order to increase the evidence of stress 
measurement, the skin temperature is used in this work to 
propose a physiological stress assessment system. 

III. METHODS AND MATERIALS  

A. Protocol 

Fig. 1 shows the proposed research methodology of this 
work. The mental arithmetic task is one of the efficient 
stimuli to induce stress [2], [16], [17]. In this work, a mental 
arithmetic task has been proposed, which consists of 
arithmetic problems with audio distraction to increase stress 
through the mental demand [2], [18]. The protocol consists 
of 4 different levels such as relaxing with soft music, low 
level (low difficulty), medium level (medium difficulty), and 
high level (high difficulty) with audio distraction.  Each 
level has 30 arithmetic problem addition, subtraction, 
multiplication and division or combination of these. Each 
problem has 4 answers and subject click the correct answer 
using mouse within 10 sec provided. If the subject is 
unsuccessful to click the correct or not click any answer 
within 10 sec, the protocol automatically starts from the 
beginning of that level. In this approach, arithmetic problem 
with audio distraction increase the mental demand and 
reduces the cognition and memory. These complexities are 
the main reason for induction of stress levels. Relaxations 
are provided at initial and final stages of the stress-inducing 
task. For efficient classification the initial relaxation and 
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high-level stress are considered to be normal and stress, 
respectively. The complete duration of stress is around 66 
min.  
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Fig. 1.  Research methodology. 

B. Subjects and data acquisition  

Totally, 40 subjects (20 males and 20 females) in the age 
group between 20 and 25 years with similar educational and 
cultural backgrounds participated in this study. All the 
subjects free from history of medication or a drug intake and 
smoking habit. All the subjects provided written consent and 
confirmed that their participation is voluntary to this 
research. The detailed explanation was given about the 
protocol prior to the start of the task. Three ECG surface-
replaceable electrodes (Ag/AgCl) were placed based on 
Einthoven triangle placement. Bipolar (Ag/AgCl) gold 
plated reusable electrodes were placed on the left Trapezius 
muscle. Similarly, the thermistor-based skin temperature 
electrodes were placed under the armpit in order to avoid 
external temperature interference. Finally, the GSR electrode 
was placed on the hand between two fingers. Four 
physiological signals (ECG, EMG, GSR, and ST) were 
collected during the entire experiments from the 
participating subjects.  ECG, GSR and ST signals were 
sampled at a frequency of 1 kHz using AD Instruments, 
Australia. The EMG signal was sampled at 500 Hz using 
PHYWE Instruments, Germany. The complete 
experimentation was free from the fluctuation of 
temperature, lighting, human interference, and external 
sound. Finally, the subject was asked to report the 
effectiveness of the protocol after the experiments were 
completed. Fig. 2 shows the descriptive pattern of multiple 
signals acquired in this research.  

C. Wavelet denoising and digital elliptic filtering  

A common preprocessing methodology is required while 
investigating multiple physiological signals without using 
any deletion of the useful frequency range, to remove the 
baseline wandering, high-frequency noises, and power line 
noises. In this work, to remove the noises from the ECG and 
EMG signal, the common preprocessing methods were 

found to be more useful. The wavelet transform has its own 
capability to denoise the abnormal variation occurring in any 
frequency [19]. The complete algorithm does not depend on 
the cutoff frequency ranges. Instead, of cutoff frequency, a 
statistical estimate based thresholding is used to remove 
noise in each level of the decomposition. In our previous 
work, performance of wavelet denoising was tested in our 
ECG signal using different wavelet functions. Finally, we 
found that the rigrsure thresholding rule is better than other 
methods. Similarly, three mother wavelet functions, namely 
“db4”, “coif5” and “sym7” wavelet functions were 
investigated to determine the best among them [20]. The 
result shows that “coif5” wavelet transform performs well 
and the obtained wavelet function is common for both ECG 
and EMG signals. The major advantage of “coif5” wavelet 
function is the convergence of the ECG and EMG signals 
completely. The “coif5” mother wavelet, rigrsure 
thresholding rule, and soft thresholding method was utilized 
in our experiments.  ECG and EMG analysis signals were 
decomposed up to 14 levels in order to search for the low-
frequency signals. Similarly, the GSR and ST signals useful 
information in a particular frequency range only. Therefore, 
the 4 order low pass digital IIR elliptic filters were applied 
to remove the unwanted information above the 8 Hz in GSR 
and 1 Hz in ST signals.  

0 2000 4000 6000 8000 10000 12000
-0.5

0

0.5
ECG signal

0 50 100 150 200

0.7
0.8
0.9

HRV signal

0 2000 4000 6000 8000 10000 12000

-0.01

0
0.01

0.02

EMG signal

0 2000 4000 6000 8000 10000 12000

0.02

0.04
GSR signal

0 2000 4000 6000 8000 10000 12000
35.56

35.58

35.6
ST signal

 
Fig. 2.  Multiple physiological signals.  

D. Feature computation  

To extract the features, the preprocessed signal was run 
through the feature extraction methods. The ECG signal was 
directly analysed using FFT and simple statistical features 
such as mean, standard deviation, power, energy were 
computed in both time and frequency domains of 0.05–0.15 
Hz and 0.15–0.5 Hz [11]. However, the HRV is the more 
dominant signal in stress assessment. HRV signals were 
derived from the acquired ECG signal using the “coif5” 
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wavelet function-based modified Pan-Tompkins algorithm 
[21]. The derived HRV signal presented the problem of 
noise peaks and missed beats that more sensitive to HF and 
LF power in the stress assessment studies. To resolve these 
issues, ectopic beat removal was done using beat 
replacement and interpolation [22]. The HRV is an unevenly 
sampled time signal and its power spectrum extraction in the 
frequency domain cannot be done by FFT. Gilford et al. 
proposed the LS periodogram to extract the power of the 
above complex HRV signal [22].  Totally, three frequency 
bands (0.04–0.15 Hz, 0.15–0.5 Hz and 0.04–0.5 Hz) in the 
power spectrum were studied using (HOS) features, namely 
kurtosis, skewness, third-order cumulant, and fourth-order 
cumulant. The same features of ECG were used in the 
analysis of EMG signals time and frequency domains for the 
frequency range of 0–16 Hz [6].  The latency, amplitude, 
rise time, and half recovery time represent the typical 
electrodermal activity. Latency of EDR is the time difference 
between stimuli and the onset of the rise of the response. 
EDR amplitude is the difference between the peaks of the 
response to baseline amplitude. EDR duration is the time 
duration between the onset of response and peak response. 
The above features are computed in the GSR signal in the 
time domain signal of 0–8 Hz. Finally, the mean, minimum, 
maximum, and standard deviation of ST were calculated.  

E. Classification 

Mapping the input pattern into appropriate class is the 
main function of artificial classifiers. In this work, we 
concentrated on studying two simple nonlinear classifiers, 
namely K-nearest neighbour (KNN) and PNN. These 
classifiers work entirely differently from each other. The 
KNN works based on the number of nearest neighbours in 
the testing features over the training feature. The Euclidian 
distance-based operation is incorporated in this study. The 
minimum k value change is usually suggested for better 
discrimination. Therefore, 1–10 k value tested and the 
classification result of each k value is obtained from the 
average of 10x randomly taken samples of shuffled data. 
Ten-fold cross validation of KNN classifiers is also done to 
compare the results with the same procedure.  

TABLE I. FEATURES INVESTIGATED IN ALL THE SIGNALS. 

Signal Bands Domain Features 
Total in each 

signal 

ECG 9 2 6 108 

HRV 3 1 (time) 5 15 

EMG 1 2 6 12 

GSR 1 1 (time) 6 9 

ST 1 1 (time) 4 4 

Total features in all the signals 148 

 
PNN classifier works in different principle, the 

architecture of PNN consists of input, output, pattern, and 
summation layers. It has a parallel structure and which faster 
than back propagation neural networks. The operation of 
PNN is based on the probability density function, with its 
performance depending upon the spread factor. The spread 
factor close to 1 is more significant than the minimum value 
during the classification. Each spread value and its overall 
classification accuracy were obtained in a similar technique 

to the k value of KNN. Table I shows the summary features 
investigated in each signal. A total of 40 subjects and 148 
features were investigated; 70% of the data in each feature 
were tested, and 30% of the features were trained in all the 
signals.  

IV. RESULTS AND DISCUSSION  

In this work, the overall classification accuracy is reported 
along with sensitivity, and specificity. To obtain these 
measures, the True Positive (TP), False Positive (FP), True 
Negative (TP), and False Negative (FN) values were 
calculated. Sensitivity=TP/ (TP+FN), and specificity=TN/ 
(TN+FP), Overall accuracy=TP+TN / (TP+TN+FP+FN) 
was computed. The overall classification accuracy of the 
dominant features of each signal is reported in Table II.   

A. Classification using nonlinear classifier  

The compressive results of dominant features and 
classification results are compared in three classifiers 
including 10-fold KNN. The maximum classification 
accuracy of 76.25 % was obtained in 0.15–0.5 Hz of the 
ECG signal in mean feature. The specificity and sensitivity 
are well balanced in the features with the rate of 75.61 and 
76.92 %, respectively, in the KNN conventional classifier 
when the value is 7. The HRV signal is another prime 
measure in human stress assessment research. Totally, 3 
frequencies were investigated, and the LF and HF frequency 
bands of HRV produced the maximum detection rate in 
second- and third-order cummulants (93.75% in both of the 
features). However, the specificity of LF and HF bands is 
90.7 % and 88.89 %, respectively, and sensitivity of LF and 
HF bands is 97.3 % and 100%, respectively while the k 
value is 5 in K-fold KNN. The HRV feature shows the 
maximum accuracy obtained while the K value is minimum. 
The classification EMG signal reached the accuracy of 71.25 
% in the K-fold KNN classifier, which has high specificity 
and sensitivity when the K is 7. However, the PNN is 
performing relatively well with the accuracy of 70.82% 
while the spread factor is 0.03.  In GSR and ST 
classification, the classification accuracy of 70.83% and 
75.32% was obtained with different specificities and 
sensitivities while the spread factor is 0.04 and K value is 1.   

B. Statistical analysis of dominant features 

One-way ANOVA was performed in all the dominant 
features to identify the features that are statistically 
distinguishable. The mean in 0.15–0.5 Hz of the ECG is 
statistically significant, between normal to stress:  F (1, 79) 
= 28.62, p<0.001, in normal (M=0.072, SD=0.016) and in 
stress (M=0.050, SD=0.021).  Similarly, normalised second-
order cumulant of the HRV feature between normal and 
stress is statistically significant: F (1, 79) =112.51, p<0.001, 
in normal state (M=0.086, SD=0.011) and in stress state 
(M=0.05, SD=0.018). On the other hand, normalised third-
order cumulant of the HRV feature between normal and 
stress is also statistically significant: F (1, 79) =137.86,       
p<0.001, in normal state (M=-0.093, SD=0.016) and in 
stress state (M=0.43, SD=0.021). Compared to other 
physiological signals, ECG and HRV performed well in 
stress computation.   
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TABLE II. RESULTS OF MULTIPLE PHYSIOLOGICAL SIGNALS-BASED STRESS ASSESSMENT SYSTEM. 

Signal Domain, Frequency range, & Feature Classifier 
KNN: K , PNN: 

S 

Specificit

y 

Sensitivit

y 

Overall 

Accuracy 

ECG Time, (0.15–0. 5) Hz, & mean 

KNN Conv. 7 76.92 75.61 76.25 

10 fold 8 72.02 71.12 72.15 

PNN 0.1 73.73 63.23 73.83 

HRV 

Frequency, (0.04-0.15Hz), & second 
cummulant 

KNN Conv. 1 85.71 100.00 91.67 

10 fold 6 90.70 97.30 93.75 

PNN 0.08 85.71 100.00 91.67 

Frequency, (0.15-0.5Hz), & third cummulant 

KNN Conv. 2 85.71 100.00 91.67 

10 fold 5 88.89 100.00 93.75 

PNN 0.1 85.71 100.00 91.67 

EMG Time, (0-16) Hz, & normalized mean 
KNN Conv. 3 85.71 64.71 70.83 

10 fold 7 79.31 66.67 71.25 

PNN 0.03 72.73 69.23 70.83 

GSR Time, ( 1-8) Hz, & mean startle amplitude 
KNN Conv. 6 66.90 74.49 70.00 

10 fold 6 65.22 56.14 58.75 
PNN 0.04 66.67 77.78 70.83 

ST Time, ( 0-1) Hz, & normalized mean ST 
KNN Conv. 1 71.43 80.00 75.32 

10 fold 8 74.49 66.90 70.07 
PNN 0.10 68.75 87.50 75.00 

Note: *K -K value for KNN; S-spread factor for PNN;  KNN Conv.-KNN conventional r; 10 fold-10 fold cross validation using KNN 

 

The mean value and standard deviation are only included 
in the features of EMG, GSR, ST, and GSR because the 
probability of those features was p<0.05: EMG in normal 
(M=-0.053, SD=0.023) and stress (M=-0.060, SD=0.026) 
conditions; GSR in normal (M=0.060, SD=0.0146) and 
stress (M=-0.065, SD=0.145) conditions; ST in normal (M=-
0.062, SD=0.005) and stress (M=0.064, SD=0.0053) 
conditions. Fig. 3 shows the dominant feature elevations and 
drop in normal and relaxed state over the 40 subjects in this 
study during the final segment of the task. 

C. Comparative analysis and discussion    

Literature only carried out similar kinds of 

experimentation using classifiers. In this investigation, we 
generally intend on identifying the stress. Therefore, we 
investigated several features instead of selecting optimum 
features. In [6], 29 statistical features including 4 
physiological signals have been estimated for car driver 
stress detection, which contains the mean of the EMG, 
normalised mean, and variance of respiration, heart rate, and 
skin conductivity. Video metric-based data sorting and 
classification produced the 97.02% accuracy in all signals. 
Similarly, 90.02% accuracy was obtained while investigating 
11 features of four physiological signals over the 32 subjects 
[7]. 
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However, these investigations are only discussing the 
overall classification results rather than the individual 
signals and its feature performance. Later on, some of the 
studies are initiated to investigate the various features using 
single physiological signals that targeted the classification 
instead of statistical analysis [13], [15]. Our present study 
involves subjects being independently analysed according to 
the protocol design.  The efficient protocol, suitable signal 
processing methodology, and proposed as well standard 
features are the main reasons for the improved accuracy. In 
existing investigations, the absence of long-term objectives, 
improper stimuli and signal selection, and short of efficient 
feature estimation and classification method are the factors 
for the deprived results.  

V. CONCLUSIONS 

In this paper, we experimentally elaborated the human 
stress computation using multiple physiological signals as to 
locate the more dominant stress-relevant features in each 
signal. Dominant features were individually identified in 
ECG, HRV, EMG, GSR, and ST signals. Finally, the 
maximum classification accuracy obtained was 93.75% and 
91.67%, respectively in the basic HOS features of HRV. 
Similarly, GSR shows the lowest accuracy of 70.83% 
compared to other signals. Advanced signal processing 
methodology and the proposed HOS feature in the HRV 
signal are the main reasons for the improved result. 
Similarly, the EMG and GSR signals results were improved. 
Notably, the complete result is outperforming compared to 
the subject-dependent studies.  In future, number subjects 
with different age ranges are considered to develop the stress 
identification system. Later on, it will be extended to the 
stress level classification system.  
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