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1Abstract—A/D conversion methods improved through 

stochastic signal superposition, along with oversampling 

techniques present significant research direction in the area of 

signal processing and measurement. Concerning that accuracy 

of those methods rises with length of measurement interval, i.e. 

integration time; it turns them appropriate for calculation / 

measurement of the orthogonal transformations. Simulation 

and validation of above mentioned digital stochastic methods, 

requires significant computing resource allocation. Long 

measurement intervals assigned for processing of numerous 

arithmetic operations over oversampled input signals presents 

the most demanding computing requirements. 

In this paper, a novel digital stochastic measurement 

simulation approach is presented and validated. Simulation 

approach is based on Concurrent Programming technique. 

General orthogonal transformations are analysed through the 

stochastic measurement technique. As a reference test case 

Discrete Fourier Transform is calculated over several periodic 

input signals converted by the stochastic A/D converter. Time 

required for a simulation test case accomplishment is analysed 

as a main performance metric. Final results have proven that 

Concurrent Programming technique improves simulation 

speed, without other consequences on measurement 

performance. 

 
 Index Terms—Multithreading; Parallel processing; Discrete 

transforms; Analog-digital conversion; Harmonic analysis. 

I. INTRODUCTION 

Orthogonal transforms such as Fourier [1], Hartley [2], 

Cosine [3], Walsh [4], Wavelet [1], Bilinear [5] and other 

are very important and utilized in different areas of 

engineering and information technology. Usage of these 

transforms is currently mainly in digital and discrete domain. 

Consequence of this is that all of this transforms are 

executed on identical hardware: Analog to Digital (A/D) 

converter, and embedded system with Central Processing 

Unit (CPU) and a memory. Basic digital stochastic 

measurements concept, which trades computing speed for 
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A/D converter simplicity is given in [6]. 

Mathematical definitions of the most used orthogonal 

transforms are given as a reminder in (1)–(6). 

Analog Fourier Transform 
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Discrete Fourier Transform (DFT) 
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Inverse Discrete Fourier Transform 
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Cosine Transform (applicable to even functions only) 

      
0

2
cos .F y t t dt 





    (4) 

Inverse Cosine Transform (applicable to even functions 

only) 
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Discrete Hartley Transform 

 
1

0

2 2
cos sin .

N

k n
n

H y nk nk
N N

 



    
     

    
  (6) 

In (6), k is the particular sample of Hartley Transform, yn 

is particular signal sample, n is counter variable and N is 

overall number of samples that represents signal. If sampling 

frequency is at least one order of magnitude higher than the 
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frequency of measured signal, we are talking about 

oversampling method. Throughout design of acquisition 

system, it is possible to match A/D converter resolution, 

sampling frequency and data processing speed. In case of 

orthogonal transforms, there is a need to find average value 

of integral sum of signal product with corresponding 

memorized base function for a given coefficient. Basic 

advantage of the oversampling measurement is that 

measurement precision increases with the square root of the 

number of samples. 

The rest of the paper is organized as follows. Related 

work is presented in Section II. Section III describes 

stochastic processor of the orthogonal transformation. 

Section IV exposes theory of operation. Section V presents 

simulation results. Section VI is discussion, followed by the 

conclusion in Section VII. 

II. RELATED WORK 

A/D conversion methods enhanced with stochastic signals 

superposition are well known in the domain of signal 

processing and measurement. 

In general, those methods are derivatives of the 

oversampling techniques, like for example Delta-Sigma A/D 

conversion [7] with main difference that stochastic approach 

excludes feedback loop, which is inevitable in Delta-Sigma 

A/D conversion. Feedback increases conversion speed and 

efficiently suppresses quantization noise. However, if the 

measured input signal is noisy, i.e. if the noise floor is too 

high in the band of interest, efficiency of the feedback loop 

drops [8]. 

It is not easy to determine when significant scientific 

interest gets focused on A/D conversion systems based on 

superimposed uniform noise, but the work of Schuchman [9] 

could be highlighted as an essential from the system level 

perspective, as the author analyses effects on the generic 

sinusoidal input signal. Wagdy [10] gives exact fuctional 

relation between Probability Density Funciton (PDF) and 

variance of the quantization error if the sinusoidal signal is 

applied to the uniform quantizer: 
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where ( )ef e  is PDF of the quantization noise e , 0J  is 

Bessel function of order zero, A is the amplitude of the 

sinusoidal input signal. 

Normalization of the quantization error squared is 

expressed as 
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Such result matches the most of the theoretical 

approximations in which uniform distribution of the 

quantization error is assumed. 

If the presented concept is utilized towards True Root 

Mean Square – True RMS measurement system 

implementation [11], result brings high performance 

regarding method robustness and noise immunity. 

Further research has brought further generalization of this 

concept applied on high resolution sampling A/D converters 

[12]. Practical implementation of prototyping instruments, 

e.g. harmonic analysers is published in [13] and [14]. 

Recent results in domain of power measurement [15] 

expose high accuracy reached with only dual bit A/D 

converter structure improved with offset error suppression 

technique. Similar technique is also extended to frequency 

measurement system [16] where noise immunity creates 

valuable advantage. 

Especially interesting research direction is targeted on 

biomedical area, where low signal strength, within noisy 

environment presents demanding measurement task. Typical 

problems, successfully solved with presented technique are 

in the domain of electrophysiological monitoring, e.g. 

Electroencephalography – EEG [17], [18]. 

III. STOCHASTIC PROCESSOR OF ORTHOGONAL 

TRANSFORMS 

Stochastic additive A/D converter with two noise 

generators [6] (abbreviated SAADC 2G) is oversampling 

measurement method. With this method, we digitally 

measure average value of the integral of the two analog input 

signals product. Let’s denote these signals by y1(t) and y2(t). 

Block scheme of SAADC 2G converter is given in Fig. 1. 

y1(t)=f1(t)

y2(t)=f2(t)
h1(t)

h2(t)

A/D1

A/D2

Accumulator
Y

Y1

Y2

YA

B
 

Fig. 1.  Block scheme of SAADC 2G converter. 

As seen in Fig. 1, it is necessary to perform analog 

addition of noise sources h1(t) and h2(t) to measured signals 

y1(t) and y2(t) respectively. Constraint for operation of 

SAADC 2G is that noise signals are mutually uncorrelated 

and that distribution of its amplitudes is uniform within the 

range of ±i/2, i = 1, 2. i are steps of A/D1 and A/D2 from 

Fig. 1 respectively. If these conditions are fulfilled, 

numerical accumulator from Fig. 1 contains value   which 

is 
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Upper bound for its absolute measurement error squared 

is 
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Block B in Fig. 1 can be replaced with memory block. 

This memory block holds dithered samples of basis 

functions. Such instrument is called stochastic processor of 

orthogonal transformations (SPOT) [6] and is shown 
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schematically in Fig. 2. 

  
Fig. 2.  Block scheme of stochastic processor of orthogonal 

transformations. 

It is shown in [6] that optimal resolution of the stored 

samples is exactly 2 bits higher than resolutoin of the input 

A/D converter. In that case, measured signal waveform 

shape does not influence the measurement accuracy. 

If this constraint is satisfied, measurement uncertainty 

squared is 
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where, R is input voltage range in A/D converter, N is 

overall number of samples in the measurement result and 1 

is step of A/D converter. 

Equations (10)–(12) are explained in detail in [6] and 

deeper involvement in metrological part of the problem is 

out of scope of this paper. 

If we take resolution of stored samples of 8 bits, optimal 

resolution of A/D converter is 6 bits. Input voltage range in 

A/D converter is R = 2.5 V. Sampling frequency is 1 MHz 

(20,000 samples per period for 50 Hz mains). Overall 

duration of the measurement is 2 s (100 periods of mains). 

With given measurement parameters, upper bound limit for 

absolute measurement error is 
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which finally gives 

 50.4 V.s   (14). 

IV. THEORY OF OPERATION 

In simulation, each signal consists of 50 harmonic 

components. Samples are created from 50 sine and 50 cosine 

signals with corresponding frequencies. Also, there is a need 

to calculate noise samples that are with uniform distribution 

of the amplitudes and with infinite pattern length (infinite 

period). For that purpose, lagged Fibonacci generator [19] 

was used. Lagged Fibonacci generator takes another 20 

arithmetic operations per sample. According to simulation 

parameters given, it takes 20,000 samples per one period of 

mains (50 Hz) and for 2 s of measurements it takes 100 

periods of mains. Finally, for reliable statistical result, 50 

measurements per one coefficient must be taken into 

account. Overall, for one coefficient it takes 

 920 50 20,000 100 2 10 ,CN        

 

(15) 

arithmetic operations. 

Applying IEEE standard 1547-2003 [20], for complete 

analysis of the signal in distributive network, 50 harmonics 

has to be measured, where every harmonic has it’s cosine 

and sine component. Further, it means 

 
11100 2 10 ,S CN N     (16) 

i.e. 21011 arithmetic operations. In (16), NS is overall 

number of arithmetic operations that must be calculated to 

obtain all signal spectra. NC is number of arithmetic 

operations for one sine or cosine DFT coefficient 

component. 

It is desirable to divide such large number of arithmetic 

operations among several logical processors inside one 

physical processor. Utilizing .NET framework and C# 

programming language, there are three mechanisms for 

parallel processing SPOT operations. In all of these cases, 

multithreading can be achieved by putting complete code for 

one sine or cosine component, including 50 measurement 

loops into single calculus method. This method has to take 

information about base function (sine or cosine) as well as 

harmonic order. The simplest way to pass this data to the 

method is to send single integer parameter. The calculation 

method then analyses this integer parameter taken, and if it is 

even, sine component will be calculated, otherwise if it is 

odd, cosine component will be calculated. Harmonic order 

can by calculated from the very same parameter value 

according to (17) and (18). If parameter P is even number, 

harmonic order H is calculated as 

 1,
2

P
H    (17) 

and if parameter P is odd number, order of harmonic H is 
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where P is the value of the parameter transferred to calculus 

method, while H is harmonic order. For example, if number 

zero is transferred, method will simulate measurement of the 

first sine harmonic. If number one is transferred method will 

simulate first cosine harmonic. 

There are generally several ways to spread execution of a 

calculating code throughout the logical processors in a single 

and/or multiple processor cores. Each of these techniques 

has some advantages and drawbacks that will be discussed in 

detail in following subchapters A, B and C. 

A. Usage of Threads 

Threads [21] are independent code sequences that are 

executed at the same time together with other code 

sequences on different logical processors of the same or 

more physical processors. In this way, parallel execution of 
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the same code with utilization of different parameters 

(choice of sine or cosine functions and order of harmonics 

that is taken) does real parallel processing. However, threads 

are specific objects each of which has its own program 

counter and stack. The size of a thread in .NET framework is 

4 Mb on a 32 bit operating system (OS), or 8 Mb on a 64 bit 

OS. In multithreading, several threads are part of the same 

virtual address space and they share code, files and data in 

both virtual and physical mapping. So, each thread has its 

own program counter and stack, and shared files, data and 

code, as it is shown in Fig. 3. 

Thread1 Thread2 Thread3

Regs.

Stack

Regs.

Stack

Regs.

Stack

C
o
d
e

D
a
ta

F
il
e
s

 
Fig. 3.  Block scheme of memory usage by threads in multithreading. 

General problem with threads is that threads are “time 

hungry” objects and operating system (OS) spends 

significant time during its creation. Second problem is that 

once started thread can’t be started again (unless Thread 

Pool is used), but still it occupies memory. 

B. Usage of ForEach Method of Parallel Class 

Inside System.Threading.Tasks namespace of .NET 

framework, there is a class “Parallel” that allows parallel 

execution of repeating loop. This is a static class (class that 

can’t instantiate an object of it, but methods of such class are 

accessible directly via class name), that has “ForEach” 

method. This method has purpose to start one other method 

several times with different parameters passed to it in 

parallel fashion. In case that CPU contains several logical 

processors, execution of the code is much faster. Opposite to 

sequential loops execution, in use of “ForEach” method, 

order of execution can’t be guaranteed. For SPOT 

simulation presented in this paper, order of each coefficient 

measurement simulation has no influence on overall result, 

so “ForEach” method is applicable for this purpose. In 

“ForEach” method programmer can’t define level of 

parallelism. Instead, Run-time environment executes steps of 

the “ForEach” method in amount that is possible to apply in 

given moment, as it is shown in Fig. 4. 

Core 1

Core 2

Core N

...

Loop 1 Loop 2 ... Loop N

Output 1

Output 2

...

Output N

 
Fig. 4.  Block scheme of “ForEach” method execution. 

Call of “ForEach” method is made in such a way that in 

single call, pointer to array with all parameters that has to be 

processed is sent together with delegate to a method that will 

be executed in parallel fashion. In particular simulation, 

array of parameters is array of integers that has values form 

1 to 100. 

C. Usage of Thread Pooling 

Main advantage of Thread Pool concept [22] is that 

multithreading environment is created and instead of 

creating new threads over and over again (which is quite 

time consuming), once formed pool of threads processing 

new request over and over again. Schematically it is shown 

in Fig. 5. 

Request 1

Request 2
...

Request N

Thread Pool

t1,t2,...,tM

M<N

Output 1

Output 2

...

Output N  
Fig. 5.  Block scheme of Thread Pool. 

In Fig. 5 we can see N requests and M threads in pool, 

where M < N. Creating new threads burdens CPU and if we 

have, like in the given simulation 100 requests that has to be 

fulfilled while each request assumes 2×109 arithmetic 

operations (15), time savings can be significant. The only 

limitation in Thread Pool usage is that all threads in the pool 

must be with the same priority and order of thread execution 

can’t be controlled as well as number of threads in the pool, 

since the Run-time environment creates and controls threads. 

However, these limitations have no influence on SPOT 

measurement simulation, and benefit is two order of 

magnitude shorter simulation time compared with other 

approaches. 

V. SIMULATION RESULTS 

Simulation verification has been performed over a five 

different test cases. Each test case assumes digital stochastic 

measurement simulation of DFT transformation applied over 

a signal which includes significant higher harmonic 

components. Let’s denote given test case signals with s1, s2, 

s3, s4 and s5 respectively. 

Waveforms of given signals are presented in Fig. 6 to 

Fig. 10, while precise mathematical formulas are given in 

(19)–(23) respectively. 
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Fig. 6.  Signal s1. 
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Fig. 7.  Signal s2. 
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Fig. 8.  Signal s3. 
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Fig. 9.  Signal s4. 
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Fig. 10.  Signal s5. 
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Without any loss of generality and in order to avoid too 

dense graphics, only initial three (first, second and third) and 

final three (forty-eight, forty-ninth and fiftieth) harmonic 

errors are presented for each simulated test case. Figure 11–

Fig. 15 correspond to simulated harmonic measurement 

error levels for signals s1 to s5 respectively. 

In Table I–Table V results of simulations are presented 

together with simulation time. In tables, parameter sA is 

averaged standard deviation, obtained as arithmetic mean 

value of 100 variances square rots. Each of these variance 

square roots is calculated for corresponding sine or cosine 

coefficient and for all 50 DFT coefficients it makes one 

hundred results which are averaged. Among these 100 

results value M presents maximum. Fourth column presents 

simulation time. 
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Fig. 11.  Signal s1. Harmonics measurement errors. 
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Fig. 12.  Signal s2. Harmonics measurement errors. 
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Fig. 13.  Signal s3. Harmonics measurement errors. 
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Fig. 14.  Signal s4. Harmonics measurement errors. 
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Fig. 15.  Signal s5. Harmonics measurement errors. 

TABLE I. SIMULATION RESULTS FOR SIGNAL S1. 

Signal s1 sA M Simulation time 

No threads 27.41 µV 33.1 µV 10h:41min:31s 

Regular threads 27.45 µV 32.5 µV 2h:15min:12s 

Parallel.ForEach 27.43 µV 30.5 µV 1h:05min:08s 

Thread Pool 27.42 µV 31.7 µV 6min:11s 

TABLE II. SIMULATION RESULTS FOR SIGNAL S2. 

Signal s2 sA M Simulation time 

No threads 28.39 µV 33.3 µV 10h:41min:11s 

Regular threads 28.44 µV 32.7 µV 2h:15min:05s 

Parallel.ForEach 28.41 µV 31.4 µV 1h:05min:06s 

Thread Pool 28.40µV 32.6 µV 6min:13s 
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TABLE III. SIMULATION RESULTS FOR SIGNAL S3. 

Signal s3 sA M Simulation time 

No threads 26.39 µV 31.0 µV 10h:41min:07s 

Regular threads 26.44 µV 31.7 µV 2h:15min:11s 

Parallel.ForEach 26.41 µV 30.6 µV 1h:05min:22s 

Thread Pool  26.40 µV 31.4 µV 6min:15s 

TABLE IV. SIMULATION RESULTS FOR SIGNAL S4. 

Signal s4 sA M Simulation time 

No threads 27.55 µV 31.1 µV 10h:41min:13s 

Regular threads 26.57 µV 29.4 µV 2h:15min:12s 

Parallel.ForEach 26.21 µV 30.5 µV 1h:05min:15s 

Thread Pool  26.47 µV 30.2 µV 6min:17s 

TABLE V. SIMULATION RESULTS FOR SIGNAL S5. 

Signal s5 sA M Simulation time 

No threads 27.48 µV 28.9 µV 10h:41min:21s 

Regular threads 26.51 µV 29.3 µV 2h:15min:41s 

Parallel.ForEach 26.39 µV 31.4 µV 1h:05min:49s 

Thread Pool 26.37 µV 29.2 µV 6min:09s 

VI. DISCUSSION 

According to the results given in tables from I to V, it is 

obvious that foremost simulation approach is usage of 

Thread Pool, which accelerates simulation process 

significantly and generally saves OS resources. 

Using Thread Pool in simulations that takes 200 billion 

arithmetic operations reduces simulation time for two orders 

of magnitude, compared with simulation on the same CPU 

without Thread Pool. On CPU with four cores and eight 

logical processors with 3.3 GHz clock, and PC platform with 

16 GB RAM memory; time taken to finish simulation was 

2 hours and 15 minutes by using threads, and only 6 minutes 

by using Thread Pool. Advantage on the system level reveals 

through the optimal parallel distribution of computing tasks 

on available logical processors. Threads usage generally 

offers execution parallelism, while optimal solution within 

multithreading environment brings Thread Pool. 

For simulation of SPOT operations on five proposed test 

case signals, simulation results are completely inside 

theoretically predicted boundaries, but simulation time on 

the same CPU is significantly different depending on the 

thread technique used. 

VII. CONCLUSIONS 

Simulation of the electronic measurement systems is 

generally demanding computing task. It could be solved 

through the usage of state of the art simulation tools, which 

offers libraries of predefined models and objects, which 

mainly shortens the time for system modelling, but on the 

other hand keeps designers away from the physical 

implementation and as a drawback in many cases extends 

execution time. 

Opposite approach analysed in this paper assumes 

creation of local library of models and blocks used for a 

system set-up which could be precisely tuned for 

accomplishment of the required measurement simulations in 

a minimal time frame. Such approach requires significant 

time needed for initial generation of necessary models, 

libraries and multithreading environment adjustment. 

Advantage of presented solution is minimization of the CPU 

resources, on the first place execution time. 

Digital Stochastic Measurement technique generally 

trades oversampling and large number of arithmetic 

operations for final accuracy. In applications like orthogonal 

transformations, numerical complexity rises and it makes 

simulations long lasting tasks. Presented results have proven 

that concurrent programming technique offers optimal 

computing method which successfully bridges complex 

numerical requirements and shortens execution time. 

For implementation of demanding simulation tasks, like 

those on stochastic implementation of orthogonal 

transformations, Thread Pool should be considered as 

regular practice. 

From practical engineering point of view, quite promising 

research direction assumes simulations running on virtual 

scalable machine in the cloud, where CPU can be defined 

with a lot more logical processors. This final proposal 

presents main future study path. 
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