
ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 24, NO. 4, 2018

1Abstract—OSPF is a commonly used link state routing
protocol in order to interconnect network devices inside an
Autonomous System. This paper focuses on achieving a detailed
modelling for OSPF by performing manual algebraic
derivations according to Algebra of Communicating Processes
(ACP) axioms. The aim of this detailed model is to get a
realistic approach of OSPF dynamics by applying the timers
involved and by describing the full Link State Advertisement
(LSA) exchange process.

Index Terms—ACP; Formal protocol specification;
Networking; OSPF.

I. INTRODUCTION

OSPF [1] is an Interior Gateway Protocol (IGP) which
may most likely be the most widespread routing protocol
nowadays, mainly due to its fast converging time and its
easiness of configuration.

The aim of this paper is to get an algebraic formal model
for OSPF, that meaning a formal protocol specification with
mathematical notation. Formal Description Techniques
(FDT) [2] are largely used for modelling protocols in order
to check for design flaws and to facilitate automated
protocol implementation.

Most FDT are implemented by means of software tools
such as mCRL2 [3] or Spin [4], but in order to get algebraic
formal models, the most convenient tools are process
algebras, which allow to manually reason about processes
following a set of axioms.

There are some kinds of process algebras [5], but the one
fitting better for algebraic protocol modelling may be
Algebra of Communicating Processes (ACP) [6]. That is
because ACP is the most abstract of all its counterparts [7],
as it does not take into account the real nature of processes,
hence allowing to just focus on their core properties [8].

Therefore, ACP is really suitable for the implementation
of algebraic formal modelling, as it facilitates the study of
concurrent and distributed systems [9], such as routing
protocols being independently run by each particular router
within certain routing domain. In addition to that, ACP may
also provide algebraic tools for its further verification [10].

There is not much information concerning this area in the

Manuscript received 30 December, 2017; accepted 28 April, 2018.

literature, therefore the design of a formal model of OSPF by
using ACP has been undertaken, where algebraic derivations
were manually performed so as to prove the correctness of
the final outcome.

A routing protocol performs three basic functions, being
identifying their neighbours, managing the route paths to all
destinations and making dynamic decisions about where to
forward user traffic getting in.

A detailed model has been designed with the premise of
making it as close to real as possible, hence considering the
real LSA exchange process and taking into account timers
involved in sending and receiving both OSPF hello packets
and LSA refresh packets.

In this paper, we focus on studying that model with
different design parameters, such as the different network
types available for a network segment and the number of
routers within the OSPF domain.

The organisation of this paper will be as follows: first,
Section II introduces the OSPF network types, then,
Section III describes the kind of relationships between
routers within an OSPF domain, next, Section IV presents
the OSPF detailed model, after that, Section V renders a
practical example of that model, later, Section VI performs a
verification of that model, and finally, Section VII draws the
final conclusions.

II. OSPF NETWORK TYPES

Prior to working on the expression for the OSPF models,
some considerations may be done regarding the network
type. The OSPF v2 standard presents four kinds of networks
to be distinguished, each one with its own characteristics, as
it may be seen in Table I regarding network type and in
Table II with hello and dead timers.

Each network type has its own independent TYPEid value,
but they might be associated in two different ways, either
according to the binary values of the variable NT, standing
for Network Type, or otherwise regarding the binary values
of the variable TT, related to Timer Type.

On the one hand, two network types share the need for
categorising OSPF routers within a network segment as
Designated Router (DR), Backup DR (BDR) or none of
them (DROther), whereas the other two of them do not.

Study on OSPF Algebraic Formal Modelling
Using ACP

Pedro Juan Roig1,2, Salvador Alcaraz1, Katja Gilly1, Carlos Juiz2

1Department of Physics and Computer Architecture, Miguel Hernandez University,
Avda. Universidad, s/n - 03202 Elche (Alicante), Spain

2Department of Computer Science, Balearic Islands University,
Ctra. Valldemossa, km 7.5 - 07122 Palma de Mallorca, Spain

pedro.roig@graduado.umh.es

http://dx.doi.org/10.5755/j01.eie.24.4.21484

77



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 24, NO. 4, 2018

TABLE I. NETWORK TYPES.
Network Type Nomenclature TYPEid NTvalue

Broadcast BRC T = 0 NT = 0
Point to Point P2P T = 1 NT = 1

Non Broacast MultiAccess NBMA T = 2 NT = 0
Point to MultiPoint P2MP T = 3 NT = 1

TABLE II. HELLO AND DEAD TIMERS.
Network

Type TYPEid
NT

value
TT

value
Hello
Timer

Dead
Timer

BRC T = 0 NT = 0 TT = 0 10 s. 40 s.
P2P T = 1 NT = 1 TT = 0 10 s. 40 s.

NBMA T = 2 NT = 0 TT = 1 30 s. 120 s.
P2MP T = 3 NT = 1 TT = 1 30 s. 120 s.

As a matter of fact, network types with the value of 0 for
the variable NT need to implement a DR and also a BDR as
they are multiaccess networks, that meaning there might be
more than two routers within a network segment. Those
network types are Broadcast (BRC), which are the Ethernet
networks, and Non Broadcast MultiAccess (NBMA), which
are the Frame Relay and ATM networks with Meshed
topology.

In such cases, DR is a router appointed to collect link-
state information from all devices within that network
segment, and in turn redistribute it properly, in order for all
those devices to share the same link-state advertisements.
Additionally, BDR is another router elected to collect link-
state information along with DR just for backup purposes.

Alternatively, network types with NT value of 1 do not
need to implement a DR and a BDR as they are peer to peer
networks, that meaning there are just two routers within a
network segment. Those network types are Point to Point
(P2P), which are the Serial networks such as PPP or HDLC,
and Point to MultiPoint (P2MP), which are Frame Relay or
ATM networks with a Hub and Spoke topology.

However, on the other hand, another different group of
two network types share the same values for the hello timers
and dead timers whilst the other two of them do not.

Network types having broadcast capabilities like Ethernet
or Serial point to point links share a hello timer of 10
seconds and a dead timer fourfold. This fact is reflected with
the value of 0 for the variable TT.

On the contrary, network types with TT value of 1 are
related to Frame Relay or ATM implementations, which do
not have inherent broadcast or multicast capabilities,
although this fact might be worked around through the
proper configuration. They share a hello timer of 30 seconds
and a dead timer four times greater.

Regarding arithmetic, the variable TYPEid defined in
Table I takes values from 0 to 3 depending on the particular
network type, but variables NT and TT may be calculated by
means of the following expressions:

( ) mod 2,idNT TYPE (1)
( ) 2.idTT TYPE div (2)

Therefore, NT might be seen as the remainder of the
integer division of TYPEid by 2, whereas TT might be
considered as the quotient, or the integer part, of that same
division.

III. OSPF NEIGHBOURHOOD – VS – OSPF ADJACENCY

It is crucial to understand both sorts of relationship
present in OSPF domains. Some OSPF devices are
neighbours if they are connected to the same subnet and
share some configuration information such as subnet mask,
authentication type, area ID and its type, hello and dead
timers.

All OSPF neighbours will keep their neighbourhood
relationship by means of exchanging hello packets but this
fact does not imply an exchange of LSA, hence no routing
information may not necessarily flow. On the contrary, some
OSPF devices are adjacent if they do share LSA among
them, so routing information does flow.

The requirements for a pair of OSPF neighbouring routers
to be adjacent depend on the network type. This is,
multiaccess networks such as BRC or NBMA need that, at
least, one of them bears the role of DR or BDR, but
otherwise, peer to peer networks such as P2P and P2MP
need not.

In summary, an OSPF adjacency relationship will only be
formed if Table III gives 1 between a particular sender,
shown in rows, and a given receiver, shown in columns. This
table is set up just for multiaccess networks, whilst peer to
peer networks always form adjacency relationship between
ends. Therefore, this table might also apply for the latter
case, just considering that both ends are DR and BDR.

TABLE III. OSPF ADJACENCY RELATIONSHIP.
rDR rBDR rDRO1 rDRO2 rDRO3 rDRO4

sDR - 1 1 1 1 1
sBDR 1 - 0 0 0 0
sDRO1 1 1 - 0 0 0
sDRO2 1 1 0 - 0 0
sDRO3 1 1 0 0 - 0
sDRO4 1 1 0 0 0 -

The aforesaid table may be implemented as an arithmetic
expression just by assigning the appropriate values to the
different router roles present in each OSPF network types, as
shown in Table IV.

TABLE IV. VALUES ASSIGNED TO ROUTER ROLES.
Network Type Router Role Naming Value

NT = 0 Designated Router DR 3
NT = 0 Backup Designated Router BDR 2
NT = 0 DR Other DRO 1
NT = 1 Point to Point Link Routers - 0

Those values are assigned in a unidirectional fashion,
hence each way is evaluated on its own. Therefore, for each
direction within a channel, the aforesaid values are
combined in the following expression, containing the
addition of the integer part of a fraction with the role of the
routers at both ends of a channel, where x represents the role
of the sending end of the link and y is the role of the
receiving end, and also containing the network type

,
2int .
5i j

x yk NT    
 

(3)

In a nutshell, coefficients ki,j capture the behaviour seen in

78



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 24, NO. 4, 2018

Table III. Those coefficients carry binary values, thus being
1 or 0, depending on whether local router i and neighbouring
router j form an OSPF adjacency relationship or otherwise.

IV. OSPF DETAILED MODELLING USING ACP
In order to achieve a detailed modelling for OSPF, the

main requirements to be met are the use of the proper timers
and the step by step LSA exchange process.

As per the action of timers, hello and dead timers depend
on the network type and they are given in Table II. However,
just as a reminder, variable NT, as stated in (1), is not to be
confused with variable TT, as stated in (2). The former
identifies whether a network type will need to appoint a DR
and a BDR or otherwise, whereas the latter identifies the
value of the aforesaid timers.

Both timers are related to the neighbour discovery
function but they are applied to different actions, as hello
timers state how long a router must wait for sending a hello
packet to a neighbour router, thus considering it as up,
whereas dead timers state how long a router must wait for
receiving a dead packet from a neighbour router prior to
considering it as down.

The same router might have different network types
associated to its various interfaces, therefore, the aforesaid
variables, and hence their related timers, will depend on the
media that each particular neighbouring router is standing.

There are another couple of timers to be taken into
consideration, such as the refresh LSA timer, whose default
value is 30 minutes, thus 1800 seconds, although it might be
adjusted from 5 minutes to 59 minutes, and the max age LSA
timer, whose value is 1 hour, thus 3600 seconds. Those
timers do not depend on the network type; therefore, they
will be invariant with respect of it.

Those timers are related to the refreshment of LSA entries
already present on the Link State Data Base (LSDB) but
they are applied to different actions, as the refresh LSA
timer states how long a router must wait for sending an LSA
refreshment update packet to a neighbour, hence
reoriginating that LSA and forwarding on to an adjacent
router, whereas max age LSA timer states how long a router
must wait for receiving an LSA refreshment update packet
from an adjacent router prior to removing that LSA from its
LSDB.

On the other hand, it is worth taking into account that
there are five different OSPF types of packets, whose
functions are described in Table V.

Therefore, hello messages will be carried within OSPF
type 1 packets whereas LSA exchange process will involve
the rest of OSPF packet types.

As per the actual LSA exchange process, a local router i
sends an OSPF type 2 packet to its adjacent routers j in order
to get its LSDB synchronised with those of its adjacent
routers. They will, in turn, acknowledge such packets by
echoing it to the local router i, whilst evaluating whether
each LSA header is more updated than those present onto
their own LSDB.

TABLE V. OSPF PACKET TYPES.
Type Packet Name Function

1 Hello Discovering and maintaining
neighbors

2 Database Description Exchanging Data Base LSA headers
3 Link State Request Requesting LSA
4 Link State Update Sending a requested LSA

5 Link State ACK Sending Acknowledgements upon
receiving LSA

If that is the case for any LSA header, an OSPF type 3
packet will be sent to the local router i in order to request the
whole LSA from it, and upon receipt of it, an OSPF type 4
packet will be sent back from the local router i containing
the LSA requested, which will in turn be acknowledged by
sending an OSPF type 5 packet to the local router i.

Needless to say that the proper neighbouring router will
be performing the complementary actions of those exposed,
thus it will be receiving packets when the local router is
sending them and vice versa.

In summary, terms depending on timers may be
considered as synchronous, whereas terms related to LSA
exchange process may be considered as asynchronous as
they do not depend on time.

The synchronous terms will be called Rs,i and they will
need the implementation of a timing system, which will
decrement the aforesaid timers and will reset to their default
values when the proper actions may be performed.

On the contrary, the asynchronous terms will be called Ra,i

and they will be time independent, so they will not need any
timing system.

All those terms may be described using ACP syntax and
semantics [11], where a product stands for a sequential
operator, an addition stands for an alternate operator and a
conditional operator is used such as True < |Boolean| > False.

Additionally, si,j(d) stands for sending a packet from i to j,
whereas ri,j(d) stands for receiving that packet at j coming
from i, and ci,j(d) stands for communication between them.

All of that is extended with the deployment of an
appropriate timing system and some auxiliary functions to be
defined later on. The different OSPF packet types will be
expressed herein as PT followed by their type number (PTt):

   

 

, , , ,

, ,,
, , ,

max ,

( 1) ( ) | 0| ( 1) ( ) | 0| ( )

( 4) ( ) ( )( )
( 4) ( ) | 0|

| 0 | ( )

i j hello i j i dead i

j i j is i
i j i j refresh i

Age i

s PT resetH i t r PT resetD i t kill j

k r PT resetM i refresh iR Time i
k s PT resetR i t

t remove i

      
 
       

     
    

,
j i 



 (4)

, ,
, , , , , ,

,,

, , , ,

( 3) ( 4)
( 2) ( 2) ( 2) ( 2)

( 5) | ( ) 1| .

( 3) ( 4) ( 5)

i j j i
i j i j j i j i j i i j

i ja i
j i

j i j i i j j i

s PT r PT
k s PT r PT k r PT s PT

s PT update iR

k r PT s PT r PT


                  
 
     

 (5)

79



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 24, NO. 4, 2018

It is to be noted that when a new route is first incorporated
into the OSPF domain or any route gets updated, the LSA
exchange process is asynchronous, as it gets triggered as
soon as that network gets configured into the OSPF domain,
regardless of the timing. However, when it comes to
refreshing LSA, the process is synchronous as it depends on
LSA refresh timer, as well as when any route gets deleted, it
depends on max age LSA timer.

As per the timing system, it may be modelled in diverse
ways, but it will herein be done by defining a variable ti,
representing the total time in seconds that local router i has
been alive within the OSPF domain.

In addition to it, the aforesaid four timers have also been
defined, going down from the maximum values previously
proposed for each one of them, as stated in (6)–(9):

_ , 10 20 ,hello MAX iT TT   (6)

_ , 4 (10 20 ),dead MAX iT TT    (7)

_ , 1800,refreshLSA MAX iT  (8)

max _ , 3600.AgeLSA MAX iT  (9)

Those four timers may be decreased one unit at a time,
meaning a second has elapsed, hence simulating the effect of
time passing by. That may be modelled in the local router i
by Algorithm 1, called time (i).

After executing this function, it returns the value 1 in
order for the synchronous terms Rs,i to be executed,
simulating the need of a positive clock edge for running
those terms.

Algorithm 1. time (i):
time(i){
thello,i = thello,i – 1;
tdead,i = tdead,i – 1;
trefreshLSA,i = trefreshLSA,i – 1;
tmaxAgeLSA,i = tmaxAgeLSA,i -1;
ti = ti + 1;
return 1;
}

Besides, resetX (i) functions reassign the maximum value
to a timer, where X represents the initial letter of the timer
involved, as it is shown in Algorithms 2-5.

Algorithm 2. resetH (i):
resetH(i){
thello,i = Thello_MAX;
}

Algorithm 3. resetD (i):
resetD(i){
tdead,i = Tdead_MAX;
}

Algorithm 4. resetR (i):
resetR(i){
trefreshLSA,i = TrefreshLSA_MAX;
}

Algorithm 5. resetM (i):
resetM(i){
tmaxAgeLSA,i = TmaxAgeLSA_MAX;
}

Furthermore, on the one hand, the init(i) function
represents a router i joining the OSPF domain, which is
represented by the variable ti = 0 and so is the hello timer so
as to begin the neighbour discovery straight away, whilst the

rest of the timers are set to infinite as they are useless at that
point of time. All of that might be seen in Algorithm 6.

Algorithm 6. init (i):
init(i){
thello,i = 0;
tdead,i = ∞;
trefreshLSA,i = ∞;
tmaxAgeLSA,i = ∞;
ti = 0;
}

As per the hello timer, a router i will be constantly
sending hello packets on a regular basis through all of its
OSPF interfaces every time the hello timer reaches zero
value. Right after that, the resetH (i) function will be
resetting it to its highest value and the time (i) function will
be decreasing it at each simulated second until it reaches
zero value the next time, repeating this cycle over and over
again as long as router i remains into the OSPF domain.

Later on, when a router i starts receiving hello packets, its
dead timer will be set to its maximum value, as a new
neighbour relationship has been established. Therefore, that
dead timer will start playing its part, increasing its value
according to the resetD (i) function and decreasing it in line
with the time (i) function, analogously as exposed for the
hello timer. This cycle will go on over and over again until
the router leaves the OSPF domain.

Also, when a router i establishes a new adjacency
relationship, it will start the process of sending and receiving
LSA from its adjacent routers. At that point, the refresh LSA
timer and the max age LSA timer will start playing their part
when sending and receiving LSA, respectively. Both timers
will be decreased by the time (i) function whereas the former
will be increased to its maximum value by the resetR (i)
function and the latter will be done by the resetM (i)
function.

On the other hand, the kill (i) function represents a router i
leaving the OSPF domain, which is represented by variable

it   and so are the rest of the timers, effectively blocking
them all. This might be seen in Algorithm 7.

Algorithm 7. kill (i)
kill(i){
thello,i = ∞;
tdead,i = ∞;
trefreshLSA,i = ∞;
tmaxAgeLSA,i = ∞;
ti = ∞;
}

Regarding LSA exchange process, an update (i) function
has been added up in the Ra,i term in order to check whether
each LSA header received by a local router i within an OSPF
type 2 packet, also known as Description Data Base (DBD)
packet, is more up to date than that of the corresponding
LSA stored on its own LSDB copy.

For each incoming LSA headers meeting this condition,
the local router i will be requesting the full LSA from the
proper DBD sender in order to perform the LSA update out
of its local LSDB. Furthermore, if the LSA is brand new, it
does demand it as well. That might be seen in Algorithm 8.

For the purpose of keeping the update (i) function as
simple as possible, both the incoming LSA header and the
already existing full LSA within the local LSDB are solely
identified by its LS ID field and the most up to date instance

80



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 24, NO. 4, 2018

is considered the one with a higher sequence number.
Algorithm 8. update (i)

update(I, DBD) {
For Each LSAh in DBD
Do
If (DBD.LSAh.LSID == i.LSDB.LSA.LSID)
Then
If (DBD.LSAh.seqNo > i.LSDB.LSA.seqNo)
Then
Return 1;
Else
Return 0;
EndIf
Else
Return 1;
EndIf
Done
}

This function has a return value in order to visualise
whether that LSA update has to be performed. This is done
by returning 1 if this is the case and also if the incoming
LSA header does not exist within LSDB, or otherwise by
returning 0 in any other case. Therefore, if the returning
value is 1, then the process for getting the full updated LSA
will be undertaken.

Additionally, another function is also used in order to
perform the refreshment of LSA within LSDB upon receipt
of a reoriginated LSA before its max age LSA timer gets to
zero, as it happens in the Rs,i term, hence avoiding the
flushing of that LSA if it reaches an age of 3600 seconds.

That task will be performed by the refresh (i) function,
which will be analogous to the update (i) function, but with
two important differences. To start with, in the asynchronous
case, the DBD argument will be considered as all of the LSA
summaries received in router i, whereas in the synchronous
case, the LSU argument will be considered as all of the set
of full LSA received within an OSPF type 4 packet, also
known as Link State Update (LSU), in router i. Additionally,
this function will not have any returning value. This
algorithm might be seen in Algorithm 9.

Algorithm 9. refresh (i)

refresh(i,LSU){
For Each LSA in LSU
Do
If (LSU.LSA.LSID == i.LSDB.LSA.LSID)
Then
If (LSU.LSA.seqNo > i.LSDB.LSA.seqNo)
Then
i.LSDB.LSA = LSU.LSA;
Else
;
EndIf
Else
i.LSDB.LSA = LSU.LSA;
EndIf
Done
}

Apart from that, the remove (i) function has been added
up in the Rs,i term in order to remove those LSA from the
local LSDB whose maximum aging time has been reached
without them being refreshed, hence they are flushed from
LSDB. That algorithm might be seen in Algorithm 10.

Algorithm 10. remove (i)
remove(i,FLUSH){
For Each LSA in FLUSH
Do
i.LSDB.LSA = NULL;
Done
}

In summary, the OSPF detailed modelling using ACP
syntax and semantics for a router i will include both
asynchronous and synchronous terms described above.
Therefore,

 , ,( ) | 0| ( ).s i a i iR i R R t init i   (10)

V. PRACTICAL EXAMPLE OF OSPF MODELLING

In order to prove (10), we are going to render an example
so as to show that the detailed router model for OSPF using
ACP mirrors the real OSPF behavior.

This example will represent a P2P network, so n = 2 and
NT = 1, although the results will be the same if n = 2 and NT
= 0:

   

 

1 1

1,2 1 ,1 2,1 1 ,1 2

2,1 1 1
1,2 1 ,1

max ,1 1

( )

( 1) ( ) | 0 | ( 1) ( ) | 0 | ( )

( 4) ( ) ( )
( 4) ( ) | 0 |

| 0 | ( )

hello dead

refresh
Age

R time R

s PT resetH R t r PT resetD R t kill R

r PT resetM R refresh R
s PT resetR R t

t remove R

 

      
 
     

     
    

1,2 2,1 1,2
1,2 2,1 2,1 1,2

1

2,1 1,2 2,1

1 1

( 3) ( 4) ( 5)
( 2) ( 2) ( 2) ( 2)

,| ( ) 1 |

( 3) ( 4) ( 5)

| 0 | ( ),R

s PT r PT s PT
s PT r PT r PT s PT

update R

r PT s PT r PT

t init R

               
     

 (10)

   

 

2 2

2,1 2 ,2 1,2 2 ,2 1

1,2 2 2
2,1 2 ,2

max ,2 2

( )

( 1) ( ) | 0 | ( 1) ( ) | 0 | ( )

( 4) ( ) ( )
( 4) ( ) | 0 |

| 0 | ( )

hello dead

refresh
Age

R time R

s PT resetH R t r PT resetD R t kill R

r PT resetM R refresh R
s PT resetR R t

t remove R

 

      
 
     

     
    

81



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 24, NO. 4, 2018

2,1 1,2 1,2 2,1

2,1 1,2 2,1
1,2 2,1 1,2

2

2 2

( 2) ( 2) ( 2) ( 2)

( 3) ( 4) ( 5) ,
( 3) ( 4) ( 5)

| ( ) 1 |

| 0 | ( ),R

s PT r PT r PT s PT

s PT r PT s PT
r PT s PT r PT

update R

t init R

    
                

 (11)

1 2

1,2 2 2,1 1

,2 1 ,1 2

1,2 2 2 2,1 1

max ,2 2

( || ) ( )

( 1) ( ) ( 1) ( )

| 0 | ( ) | 0 | ( )

( 4) ( ) ( ) ( 4) (

| 0 | ( )

H

dead dead

Age

R R time t

c PT resetD R c PT resetD R

t kill R t kill R

c PT resetM R refresh R c PT resetM R

t remove R

  

    
    
       


   

  
  

1

max ,1 1

) ( )

| 0 | ( )Age

refresh R

t remove R

 
 
    

  
      

2,1 1,2 2,1
1,2 2,1

2

1,2 2,1 1,2
2,1 1,2

1

( 3) ( 4) ( 5)
( 2) ( 2)

| ( ) 1|

( 3) ( 4) ( 5)
( 2) ( 2) .

| ( ) 1|

c PT c PT c PT
c PT c PT

update R

c PT c PT c PT
c PT c PT

update R

          
    

         
    

(12)

Simplifying the former expression by taking out the effect
of algorithms and timers, it yields the following equation,
which proves that all communications takes place as
expected according to the OSPF v2 standard explained in
this paper, either synchronous as in the first curly brackets or
asynchronous as in the second ones

 

 

 

1 2

1,2 2,1 1,2 2,1

1,2 2,1

2,1 1,2 2,1

2,1 1,2

1,2 2,1 1,2

( || )

( 1) ( 1) ( 4) ( 4)

( 2) ( 2)

( 3) ( 4) ( 5)
.

( 2) ( 2))

( 3) ( 4) ( 5)

H R R

c PT c PT c PT c PT

c PT c PT

c PT c PT c PT

c PT c PT

c PT c PT c PT

 

   

  
 
         
     

(13)

VI. MODEL VERIFICATION

Taking into account that ACP is a sort of an abstract
algebra, the verification of the model designed herein might
be undertaken using proof by contradiction, in a way that if
an initial proposition is stated and a logical contradiction
arises whilst reasoning on that premise, then the aforesaid
initial statement must be false, otherwise is true.

As stated before, the OSPF process relies on the exchange
of type 1 packets for neighbor discovery and type 2 to 5
packets for LSA exchange, the former allowing
neighbourhood relationships and the latter satisfying
adjacency relationships.

Taking a look at the final expression at the end of the
previous section, obtained for n = 2, although it might be
extrapolated for any other number of routers by applying
expressions (4) and (5), it is clear that exchanges of hello
packets (PT1) among any pair of neighbouring routers are
performed, as well as exchanges of new LSA (PT4) among
any pair of adjacent routers, all of that according to the first
pair of curly brackets. And by looking at the second pair of
them, the synchronisation process of LSA is also performed.
Hence the model designed mirrors the OSPF expected

behaviour, related in the OSPFv2.
OSPF routing table depends on the correct LSA exchange.

So if that process is performed properly, a couple of
premises will apply, such as there will always be at least a
path between any two routers located into the OSPF domain,
as well as if a path goes down between a source and a
destination and there is a redundant path to the same
destination, then that other path may be used to get there.

According to the model, the first one is met because
neighbour relationships will be established for each pair of
neighbours within the OSPF domain, due to the exchange of
PT1 packets. Additionally, the second one requires for the
model to discover all paths from one source to one
destination, and that is performed by establishing adjacency
relationships for each pair of adjacent routers within the
OSPF domain, due to the application of the ki,j coefficients
and the exchange of PT2, PT3, PT4 and PT5 packets.

VII. CONCLUSIONS

In this paper, we have been working through the
achievement of a formal detailed modelling of OSPF. For
that purpose, ACP syntax and semantics have been used in
order to perform manual algebraic derivations.

The main points taken into account to reach the aforesaid
modelling have been the application of the timers involved
in OSPF and the description of the LSA exchange process,
as stated in the OSPF v2 standard.

A practical example has been proposed with a peer to peer
network composed by 2 routers and after performing the
proper algebraic derivations, its behaviour mirrors that of the
real OSPF routing protocol.

That outcome may be replicated for any other kind of
network with 2 routers, as an adjacency relationship will
always be established, no matter the network type.

Eventually, that result might be extended for any type of
multiaccess network with a higher number of routers, as the
only difference will be adjacency relationships among them.

Therefore, the proposed ACP model for OSPF routing
protocol meet the specifications of the standard OSPFv2.

82



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 24, NO. 4, 2018

REFERENCES

[1] OSPF version 2 (RFC 2328), IETF, 1998. [Online]. Available:
https://tools.ietf.org/html/rfc2328

[2] E. Gunawan, Tan Pek Tong, Shi Nansi, “Survey of formal description
techniques (FDTs) for protocol converter design”, in Proc. IEEE
Region 10 Int. Conf. Computers, Communications and Automation
(TENCON 1993), Beijing, China, China, 1993, pp. 422–425. DOI:
10.1109/TENCON.1993.320017.

[3] M. H. ter Beek, E. P. de Vink, “Using mCRL2 for the analysis of
software product lines”, in Proc. 2nd FME Workshop on Formal
Methods in Software Engineering (FormaliSE 2014), Hyderabad,
India, 2014, pp. 31–37. DOI: 10.1145/2593489.2593493.

[4] S. Chen, H. Fu, H. Miao, “Formal verification of security protocols
using Spin”, IEEE/ACIS 15th Int. Conf. Computer and Information
Science (ICIS 2016), Okayama, Japan, 2016, pp. 1–6. DOI:
10.1109/ICIS.2016.7550830.

[5] D. A. Padua, Encyclopedia of Parallel Computing. Springer, 2011.
DOI: 10.1007/978-0-387-09766-4.

[6] [1] J. A. Bergstra, J. W. Klop, “Algebra of communicating processes
with abstraction”, Theor. Comput. Sci., vol. 37, pp. 77–121, 1985.
DOI: 10.1016/0304-3975(85)90088-X.

[7] W. Fokkink, Introduction to Process Algebra. Springer, 2007.
[8] J. F. Groote, M. R. Mousavi, Modelling and Analysis of

Communicating Systems. MIT Press, 2014.
[9] L. Lockefeer, D. M. Williams, W. J. Fokkink, “Formal specification

and verification of TCP extended with the window scale option”,
Formal Methods for Industrial Critical Systems, (FMICS 2014),
2014, pp. 63–77. DOI: 10.1007/978-3-319-10702-8_5.

[10] J. A. Bergstra, J. W. Klop, “Verification of an alternating bit protocol
by means of process algebra protocol”, Mathematical Methods of
Specification and Synthesis of Software Systems, (MMSSS 1985),
1986, pp. 9–23. DOI: 10.1007/3-540-16444-8_1.

[11] W. Fokkink, Modelling Distributed Systems. Springer, 2016.

83




