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1Abstract—The analysis of biomedical signals, such as the
EEGs for measuring brain activity, provides means for the
diagnosis of various cognitive tasks and neural disorders.
These signals are frequently transformed into visual
representations such as spectrograms, which can reveal
characteristic patterns and serve as a basis for classification,
when extracting specific features from them. We designed a
new method that uses spectrogram images to feed them without
any feature selection/extraction procedure directly into a deep
convolutional neural network architecture and train it for the
classification of motor impairment neural disorder in a person.
The proposed method was tested on a set of (un)impaired
subjects, where it outperformed the traditional machine
learning methods. The results, obtained without any human
intervention and by using all the default parameter values,
turned out not to lag much behind an established state-of-the-
art method, that takes advantage of using domain knowledge
for the analysis of EEG recordings. Based on the experimental
results we believe that the proposed method can be considered
as a sound basis for further optimization towards a
competitive, fully automated method for classification of EEG
signals.

Index Terms—Artificial neural networks; Biomedical signal
processing; Electroencephalography; Image classification;
Machine learning.

I. INTRODUCTION

In the recent years a tremendous amount of research effort
has been devoted to the processing and analysing of
electroencephalogram (EEG) signals, in order to be able to
use the information from these signals to diagnose some
kind of neurological disorder in a person.

The extent of possible diagnoses that can potentially be
identified in this way has been increasing over the years and
covers a wide range of neurological diseases, from mild
cognitive impairments [1], through neurodegenerative
diseases such as Alzheimer Disease [2], to the most severe
forms of neurological disorders such as amyotrophic lateral
sclerosis or cerebral palsy, where the patients may be
severely physically impaired or even completely paralyzed
[3].

EEG enlighten about the state of the brain i.e. about the
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electrical bustle going on in the brain [4]. The electrical
activity measured as voltage at different points of brain act
as basis of EEG. These signals, which are generally time
varying and non-stationary in nature, can be scrutinized
using various signal processing techniques. Although the
scope of EEG signal analysis and classification approaches
is very broad, a general way is to first pre-process and filter
the raw EEG signals, recorded from the electrodes placed on
the scalp of the subject, in order to become readable [4]. At
this point, the filtered signals can be analysed in various
ways and/or transformed to a different (e.g. time-frequency
domain) representation. A variety of different approaches,
including linear and nonlinear methods as well as
principal/independent component analysis, may be used for
the analysis of EEG data. Statistical methods can be further
modified or combined with some other methods, especially
machine learning techniques, to get better results [5], [6].

After transforming the EEG signals, they can be visually
represented as spectrograms of each EEG channel.
Spectrograms can be used to reveal patterns of continuous
changes in brain oscillation activity during some predefined
activity or performing a task [7]. Characteristic patterns can
differentiate between different states and/or situations,
which forms a basis for later classification and diagnosis by
qualified experts.

While traditional methods of computer vision and
machine learning were not able to match human
performance, the recent advancements in wide and deep
artificial neural network architectures provided results that
achieved near-human performance or have even
outperformed humans [8]. Deep neural network approaches
to image classification have been recently studied frequently
with success also in medicine. In [9] authors used deep max-
pooling convolutional neural networks to detect mitosis in
breast histology images. In [10] authors proposed a dual
pathway, 11-layers deep, three-dimensional convolutional
neural network for the challenging task of brain lesion
segmentation.

Based on these encouraging results, in this paper we
propose a new, fully automated method for the classification
of EEG spectrogram images for the detection of motor
impairments in patients using a deep convolutional neural
network architecture. As such, the proposed method does
not require any human intervention in a sense of using
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domain knowledge to guide and/or set-up the classification
process. The two main goals of the research were to study
whether the proposed method can be used to successfully
classify a certain neurological disorder and how to
appropriately transform raw EEG signals into spectrogram
images to feed and learn the neural network with. The main
advantage of the proposed method is the direct use of the
spectrogram images for learning the neural network, which
does not require a very demanding process of selecting
and/or extracting the features, nor does require any other
domain expert knowledge. If it turns out that the proposed
method would achieve a solid result, this would mean that
the classification is possible in a straightforward automatic
manner.

The remaining of this paper is organized as follows.
Section II details the proposed method. Section III presents
the methodology employed for performing the experiment,
whose results and comparison with traditional classifiers are
presented in Section IV. Finally, Section V concludes the
paper with our final thoughts and lists some future work
possibilities.

II. THE PROPOSED METHOD

The proposed method consists of pre-processing the
recorded EEG signal to reduce signal noise and
transforming the filtered signal to the time-frequency
domain using Fast-Fourier Transformation (FFT). From the
transformed signal, we plotted a spectrogram for each
channel. Spectrogram images are then used as an input data
to our deep neural network which we train using leave-one-
out principle.

A. EEG Signal Pre-Processing
The raw EEG signal pre-processing and visualization was

done using open source CEBL3 software platform [11].
Obtained EEG recordings consist of 3 minutes long sessions
recorded on 8 different channels (C3, C4, F3, F4, O1, O2,
P3, P4). We performed frequency domain filtering on each
channel by applying Butterworth bandpass filter shown in
Fig. 1.

Fig. 1. EGG signal of a single recording session for each channel with
bandpass filtering applied.

EEG signal rhythms are characterized as [2]:
 delta waves (0 Hz – 4 Hz),
 theta waves (4 Hz – 8 Hz),

 alpha waves (8 Hz -14 Hz),
 low beta waves (14 Hz – 20 Hz),
 high beta waves (20 Hz – 30 Hz) and
 low gamma (30 Hz – 50 Hz).
We filtered frequency band from 0.5 Hz–7.5 Hz to

remove low and high frequency noises and non-signal
artefacts. Our primary focus was put on delta and theta
waves frequency ranges, which based on previous work [2],
[12] are containing spectral power changes which in most
cases indicate some kind of brain pathologies.

FFT was used to transform the filtered signals to time-
domain representations. FFT is considered as one of the
most suitable methods for transforming signals between
time and frequency domain, although some of the recent
studies are proving that Wavelet transformation (WT) or
short-time Fourier transformation (STFT) is a better choice
[13]. Used Fourier transform pairs are expressed as [13]:
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After transforming the signal to time-frequency domain,

as defined in (1) and (2), we plotted spectrograms of each
channel, representing power density of signal using
logarithmic normalization which gave us graphical
representation as shown in Fig. 2.

(a)

(b)
Fig. 2. Spectrogram images of EEG recording on channel C3 used for
training the Convolutional Neural Network: a) represents spectrogram of an
impaired person; b) represents spectrogram of an unimpaired person.
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Shown on Fig. 2(a) presents a spectrogram of an impaired
brain activity on channel C3 while in Fig. 2(b) a
spectrogram of an unimpaired brain activity is presented. If
we visually compare Fig. 2(a) and Fig. 2(b) we can
recognise a slight difference between the two, especially in
power density of signal of an impaired brain activity
compared to the power density of an unimpaired person.

B. Classification with Deep Convolutional Networks
In last decade, Convolutional Neural Network (CNN) is

one of the most competitive neural network architectures for
image classification tasks, in some cases even
outperforming human performance [14]. CNNs differentiate
from widely used hand-crafted feature/classifier
combinations for computer vision tasks by forming an end-
to-end trainable hybrid feature-extraction/classification
architecture [15].

Since CNN architecture named LeNet was presented [16],
[17], CNNs standard structure contains stacked
convolutional layers, which are optionally followed by
contrast normalization or pooling (also known as down-
sampling or sub-sampling), followed by one or more fully-
connected layers. A convolutional layer is usually composed
of several feature maps (with different weight vectors), so
that multiple features can be extracted at each location.
Shifting the input of convolutional layer will shift the
output, but will leave it unchanged otherwise. Once feature
had been detected, its exact location becomes less important,
as long as its approximate position relative to others features
remains the same. Therefore, it is common, that each
convolutional layer is followed by an additional layer, which
performs a local averaging and subsampling. This results in
reduced resolution of feature map and reduced sensitivity of
the input to shifts and distortions. Successive layers of
convolutions and subsampling are typically alternated,
resulting in a “bi-pyramid”: at each layer, the number of
feature maps is increased as the spatial resolution is
decreased [18]. Fully-connected layer is layer which is
having full connections to all activations in the previous
layer as in regular neural networks. Their activations can be
computed with a matrix multiplication followed by bias
offset.

Our CNN architecture is based on LeCun’s LeNet
architecture [16] with slight adjustments in convolutional
layers’ parameters and learning parameters. As shown in
Fig. 3, there are two convolutional layers with filter size 5 ×
5 and stride 1 × 1, each of them followed by a pooling layer
using maximization function with filter and stride size 2 × 2.
First convolutional filter is having 20 filters applied and on
second we’re having 50 filters applied. After those four
stacked layers we have one fully-connected layer outputting

500 filters to output layer which then classifies image as
impaired or unimpaired. Image classification is done
separately for each of the EEG channel spectrogram image.
Final classification is made by combining sub-classifications
from single channels using a majority voting scheme.

III. EXPERIMENTAL FRAMEWORK AND SETTINGS

A. Experimental Settings
To test the proposed method we used the Colorado State

University brain-computer (BCI) collection [19] of EEG
signals, which were acquired using g.Tec g.GAMMASys
active electrodes. Recordings where captured with eight
active electrodes (8 channels) with sampling frequency of
256 Hz and a hardware bandpass filter from 0.5 Hz–100 Hz
at -3 dB attenuation [20].

The dataset contains recordings of a total of 13
participants, nine of which with no known medical
conditions. The remaining participants had severe motor
impairments. Each of the recordings contains the three
minutes long trial session, which data we used as an input to
our EEG signal pre-processing step.

Because of the small size of the dataset, we used the
leave-one-out testing approach, where we iteratively
excluded one recording from the training set and used it for
testing of the model, trained on all of the remaining
recordings.

Training of our model was performed on machine with 2
dedicated Intel Xeon E5-2630 CPU cores running at
2.20 GHz and 32 GB of dedicated RAM memory.

B. Parameter Settings
Because we have limited training samples we’ve used the

leave-one-out principle to train our CNN. Training was done
for each channel separately, giving us total of 8 trained
models which were then ensembled through algebraic
combination rules (the majority voting) – if more than half
of the channels were classified as impaired, the model
classified the subject as being impaired; otherwise it was
classified as being unimpaired. Before training, we
proportionally resized images from original 2000 px × 1500
px resolution to 270 px × 202 px. Training of model was,
taking into consideration the fact that the data set is
unbalanced and small, done using only single batch of
images, with total of 12 images, leaving one image for
testing. For training parameters, we’ve used the learning rate
of 1 × 10-6, weight initialization set with common
initialization scheme known as Xavier [21] and rectified
linear units (ReLU) [22] as activation function. For each
training of our CNN, we did 50 repetitions with one
iteration.

Fig. 3. LeCun’s general LeNet CNN architecture.
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IV. RESULTS

The classification results obtained on testing instances for
all 8 channels separately and combined using the majority
voting is presented in Table I. Subjects denoted as s21–s25
represent persons without known neural disorders (marked
as F – false cases), while subjects s11–s16 represent patients
with motor impairments (marked as T – true cases).

TABLE I. THE CLASSIFICATION RESULTS (C3 THROUGH P4 ARE
SINGLE EEG CHANNELS, WHILE CLASS REPRESENTS THE FINAL

CLASSIFICATION ACCORDING TO THE MAJORITY VOTING).

channel →
subject ↓ C3 C4 F3 F4 O1 O2 P3 P4 class

s21 F F T T T F F F F

s24 F F T F T F F T F

s23 F T T F T T T T T

s27 F T F F F F F F F

s28 F F F T T F F F F

s22 F F F F T T F F F

s26 F T F T F F T T F

s20 F F F F F F F T F

s25 F T F F F F T T F

s11 F T F F F F F F F

s13 F F F F F T T T F

s15 F F F F F T F F F

s16 T F F T F T T T T

As we can see, our method classified correctly 8 out of 9
unimpaired persons, and 1 out of 4 impaired persons –
achieving the overall accuracy of 69.23 %. The F1-score is
65.64 %, the sensitivity 25.00 % and the specificity
88.89 %.

We have also compared the performance of our proposed
method with the performance of traditional classification
methods: Linear Regression (LR), Linear Discriminant
Analysis (LDA), K-Nearest Neighbours (KNN),
Classification and Regression Trees (CART), Naïve Bayes
(NB) and Support Vector Machine (SVM). For fair
comparison, we trained all classifiers without any feature
selection, as we did not use any while training our proposed
method. From the results, presented in Table II, we can see
that KNN and SVM classifiers matched our CNN’s overall
accuracy, but fall behind on sensitivity – in other words,
neither of the mentioned two classifiers did correctly
classify any of the impaired persons’ recordings. On the
other hand, both LDA and CART performed better
regarding the sensitivity metric, with 2 out of 4 correctly
classified impaired persons, but their overall accuracy and
especially specificity are quite worse.

In order to further compare the methods, we also
computed the F1 score, which is generally used in medicine
and can be interpreted as a weighted average of the
precision and recall, where precision is the number of
correct positive predictions (correct predictions of impaired
persons) divided by the number of all positive predictions,

and recall is the number of correct positive predictions
divided by the number of all positive instances (impaired
persons). Looking at the Fig. 4, focusing on the F1 score, we
can see that our proposed method outperformed all other
methods and achieved the best result with 65.64 %, followed
by CART classifier with 62.54 %, while all other methods
performed much worse. When compared to KNN and SVM,
the two methods which achieved the same accuracy as our
CNN, our method performed better in the aspect of F1
score, by the margin of 11 %.

TABLE II. THE CLASSIFICATION RESULTS OF TRADITIONAL
METHODS IN COMPARISON WITH OUR PROPOSED METHOD.

metric →
method ↓ Accuracy Sensitivity Specificity F1 score

LDA 46.15 % 50.00 % 44.44 % 48.11 %

CART 61.54 % 50.00 % 66.67 % 62.54 %

LR 61.54 % 0.00 % 88.89 % 52.75 %

NB 61.54 % 0.00 % 88.89 % 52.75 %

KNN 69.23 % 0.00 % 100.00 % 56.64 %

SVM 69.23 % 0.00 % 100.00 % 56.64 %

Our CNN 69.23 % 25.00 % 88.89 % 65.64 %

We must add, however, that our proposed method is the
most computationally demanding of all the compared
methods. Nevertheless, regarding the fully automated nature
and good results, we believe that it is a sound candidate for
this kind of tasks.

Fig. 4. Comparison of overall accuracy and F1 score of all tested
classification methods.

When compared to the state-of-the-art classification
approach [20], which achieved 74 % overall accuracy –
81.7 % accuracy on unimpaired and 61.5 % accuracy on
impaired persons – we may say that our proposed method
was not very far behind (less than 5 %). However, we must
keep in mind the fact that our method is fully automated and
does not require any human intervention (e.g. feature
selection, domain expert knowledge) in the whole process of
EEG pre-processing, transformation and classification.
Furthermore, we did not tune any of the parameters when
training the CNN and just used the default values. As
literature reports that even a small amount of parameter
adjustments and fine-tuning can achieve a significant growth
in performance of CNN [23], we may reasonably expect
that, by fine-tuning the proposed method, the results will
further improve.
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V. CONCLUSIONS

In this paper, we presented a process of transforming a
raw EEG signal into spectrogram images using Butterworth
bandpass filtering on frequency range of 0.5 Hz–7.5 Hz, a
FFT to transform signal to time-domain representations and
logarithmic normalization to represent power density of
transformed signal. Afterwards those spectrograms images
were used to train our LeNet based CNN using leave-one-
out principle. The obtained results are very promising,
considering the totally and utterly automatic nature of the
proposed classification method.

In the future, we would like to expand our work with the
use of larger EEG datasets, different time-domain
transformations (e.g. Short-time Fourier Transformation,
Morlet Wavelet Transformation, Continuous Wavelet
Transformation), CNN architectures and parameter settings.
We would also like to do a more elaborated performance
comparison between our proposed approach using different
transformations and performance of widely used traditional
approaches.
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