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1Abstract—The following paper presents advanced methods
for evaluating the reliability of ADAS module readings, based
on an analysis of the transient supply current. Changes in the
transient current waveform occur due to environmental
conditions and damage to a module's inner circuitry. Specific
deviations in the waveforms may indicate a certain event –
either internal or external. This paper presents how to
successfully distinguish certain anomalies using artificial
neural network-based classification algorithms without having
to interfere with the module's internal circuitry.

Index Terms—Advanced driver assistance systems;
Artificial neural networks; Current measurement; Predictive
maintenance.

I. INTRODUCTION

Advanced Driver Assistance Systems (ADAS) [1]
represent one of the fastest growing areas among numerous
automotive technologies. They not only improve driving
comfort, but what is even more important – they positively
contribute to the avoidance of accidents or the mitigation of
effects of collisions. Additionally, development of ADAS
systems has hastened the achievement of the operation of
autonomous vehicles. Consequently, a need to perform
research, experiments and full-scale testing in order to
validate these novel technologies and to evaluate whether
vehicles equipped with such systems can safely operate on
public roads and whether the technology itself performs
according to specifications has been observed [2]. Carrying
out such advanced assessments is not only dictated by the
evolving complexity of ADAS, but also by growing
requirements of consumers and governmental regulations,
which push for higher safety [3] and lower costs [4]. Sensors
such as RADARs, LIDARs or cameras play key roles in
automotive applications but are vulnerable to environmental
conditions and damage to internal circuitry [5], [6].
Although the uncertainty of particular sensors readings can
be compensated for by using sensor fusion solutions
(Fig. 1), calculations that are based on the data from
damaged sensors may unreliable [7].
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Fig. 1. A conceptual representation of ADAS sensor fusion – a distributed
system with data processing in the sensor modules and decision making in
the central control unit.

To maximise the reliability of readings, an additional
fault-detection method has to be developed to warn the
parent system of the possibility of damage to a specific
sensor. As ADAS systems are being developed on a day-to-
day basis in automotive R&D departments worldwide, the
method must be versatile and should apply to the vast
majority of products. The possibility of implementing the
method externally (without having to interfere with the
integrity of a certain module's hardware) would also be a
great step forward when considering the development of
novel sensors – engineers would not have to implement the
solution in every sensor that is released. Such a versatile
quality-monitoring tool has to be based on a set of
information that would describe the current state of the
sensor without interfering with its inner structure. This can
be done by examining the values of the module's
temperature in particular spots, analysing the supply current
waveforms [8] for certain voltage levels or measuring the
timing and noises on the communication line.

The method for enhancing the reliability of the readings
of ADAS sensors that are presented in this article is based
on the analysis of transient current waveform using heuristic
methods of classification. The data, after being extracted, is
processed by both a supervised learning backpropagation
algorithm [9] and an SOM (Self-organising Map) [10].

II. DATA ACQUISITION

The first step in developing a reliability assessment
module is collecting the essential data concerning
operational conditions the ADAS sensors – in this case the
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emphasis will be put on the current measurements. There are
numerous ways to acquire signals for the transient supply
current waveforms. The most popular of these are using an
analogue-to-digital converter (ADC) [11] or a
microcontroller that is interconnected with either a Hall
sensor [12] or an instrumentation amplifier with shunt
resistance (Fig. 2). To obtain a representative transient
current waveform, the signal has to be sampled at a certain
frequency from the moment it is turned on until it enters a
steady state. When the samples are collected, they are ready
to be sent for further analysis.

Fig. 2. Transient current waveform acquisition circuit for an ADAS output
reliability assessment module – instrumentation amplifier with a shunt
resistor and filter.

The module, which is built for the reliability assessment
of ADAS sensors, samples the signal at a frequency of
100 [kHz] for around 70 [ms] (to ensure a steady state is
reached for any device). This provides a total of 7000
samples – enough for further classification. The transient
current waveforms for four representative ADAS modules
are shown below (Fig. 3).

Fig. 3. Transient current waveforms of the specific ADAS sensors that
were obtained by the module.

At first glance, it can be seen that those waveforms differ
from one another. Those differences will allow for the
further classification and examination of what type of device
is connected to the assessment module and under what
conditions it operates.

III. SIGNAL PRE-PROCESSING

The acquired signal consists of 7000 samples – too many
to use for classification. Moreover, the signal is typically
collected in an environment that is heavily exposed to
external sources of noise, e.g. a vehicle's electrical
installation. Those reasons require additional steps for the

processing of the waveforms before it can be fed into the
input of the classifying algorithm. The first step to be taken
is filtering the input signal from the environmental noise.
Such filtration can be performed using any low-pass filter,
e.g. by the moving average filter (1) [13] with a window size
wide enough to smooth the signal, while on the other hand,
narrow enough not to distort it. The given filter smoothens
the signal by calculating the mean value of a fixed number
of its neighbours (window width equals 2N)
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For a transient supply current waveform, a window width
of 20 ensures enough signal filtration without having to
worry about any distortion. The filtrated data is ready for the
next pre-processing step – extraction. Classification
methods, especially heuristic one, require an accurate
selection of their input data for the maximisation of
classification precision. There are plenty of methods for
selecting the most valuable features from a signal – the ones
that are used most frequently are the Naive Bayes classifier,
numerous genetic algorithms, the Fourier or other
transforms. By using the wavelet transform [14], the signal
can be described with a set of approximation and detail
coefficients. From each whole waveform (composed of
7000 samples), the 7th level Haar wavelet [15]
transformation delivers 25 approximation coefficients,
which can be used as the input for classification algorithm.
The following discrete sequence plot shows how a LIDAR's
waveform changes (caused by varying amount of supply
voltage) affect the transformation coefficients (Fig. 4).

Fig. 4. Approximation coefficient values of LIDAR's 7th level wavelet
transformation obtained for various supply voltage levels.

In the figure above, it can be clearly seen that even slight
changes in the supply voltage can cause significant changes
in the values of the wavelet transformation coefficients. This
ensures that the classification input vector will be sensitive
to even the smallest signal deviations, which is crucial for
the reliability estimation system – each slight change in the
environment or inner circuitry can be detected.

Another method for extracting valuable data, which can
be used for transient current analysis, is based on selecting
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the most valuable samples rather than complex signal
processing. The process, which is called naive Bayesian
classification [16] – equation (2), shows the probabilities a
model’s posterior and can be used to select samples that
tend to show the highest potential for successful
classification. To minimise the possibility of affecting the
sample selection by noise, a window that would filter out
individual well-performing samples can be applied when
their neighbour’s quality is poor. Such a filter causes only
consecutive well-matched features to be taken into account
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where Y – random variable corresponding to the class index
of an observation; Xj – predictor of an observation; π(Y = k)
– prior probability that the class index is k.

The algorithm searches for samples (or rather series of
samples) whose probability of the correct classification of
this single feature is settled above a fixed threshold. When
this collection of samples is acquired, it has to be decimated
in order to obtain an input vector for the classification of a
certain length. The plot below (Fig. 5) shows a transient
current waveform with the set of samples that was selected
by the naive Bayesian pre-classification (upper graph) and
its decimated subset (lower graph). The probability
threshold p = 75 %, window width w = 10 (341 samples).
The subset is decimated to 27 samples, which are then fed
into the classification algorithm’s input.

Fig. 5. LIDAR transient current waveform with the set of samples that was
selected by the naive Bayesian algorithm (upper) and its decimated subset
(lower).

The last extraction method to be presented is the simple
decimation of the original waveform (3). It does not provide
any enhancement for further classification and therefore it is
expected to bring the worst results from all of the pre-
processing methods

   .df x f nx (3)

The decimation coefficient n is selected in such a manner
that the number of features after applying the decimation is
equal 25 (for 7000 samples n = 280). A comparison of the
naive Bayesian pre-classification with the decimation (upper
graph) and a regular decimation (lower graph) method for
RADAR sensor is shown in the following plot (Fig. 6).

The main role of the decimation method is to compare the
two previous approaches and to assess the importance of
feature extraction related to classification issues.

As all of the pre-processing methods are presented,
validation of their efficiency will be achieved after feeding
the outputs into certain classification algorithms and
comparing their performance.

Fig. 6. RADAR transient current waveform with the set of samples that
was elected by the decimated naive Bayesian algorithm (upper) and the
original decimated signal (lower).

IV. SIGNAL CLASSIFICATION

All of the classification algorithms used in this paper are
based on machine learning – either simple, e.g. k-Nearest
Neighbours (k-NN) [17] or more complex – SOM or feed-
forward backpropagation artificial neural network. Before
analysing any transient current changes due to voltage
variation, the first step that has to be performed is examining
what kind of device is connected to the acquisition circuit.
As the signals of all of the ADAS sensors differ
significantly from one another, there is no need to
implement advanced pre-classification techniques. The best
and easiest method to implement is SOM. This algorithm
creates a map of the classified signals without the need to
provide the expected output vector (unsupervised learning).
The 5 × 5 map that is created using 520 decimated (by the
factor n = 280) current waveforms of four ADAS sensors is
presented below (Fig. 7).

It can be observed that all of the waveforms were
classified correctly – there are no mismatches in any of the
four groups and what is worth noting is that the clusters are
separated by at least one cell, which ensures an even better
signal grouping. Another part that is visible at first glance is
the fact that the classification of the set of waveforms for
selected module is divided among several cells. This
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phenomenon is caused by the fact that for 130 transient
current waveforms of a certain module, every set of ten
signals was obtained for a different supply voltage level
(from 9 V to 15 V with a step of 0.5 V).

Fig. 7. Classification of ADAS sensors using the SOM method – map of
sample hits.

As soon as a device that is connected to the transient
current acquisition circuit is classified, there is another
classifier to be trained to distinguish at which voltage the
module is operating. When the voltage over a certain sensor
is measured and the output of a certain classifier is known –
comparing those two values can provide knowledge about
whether the sensor is working correctly and whether the data
it is providing is reliable.

The first algorithm to be tested is k-NN. The method is
trained with a set of waveforms of a particular sensor
(RADAR) – ten samples for each voltage level from 9 V to
15 V with a step of 0.5 V (130 samples in total). The
validation waveforms are generated using dedicated
modelling software – signals will vary from 10 V to 14 V
(Fig. 8).

Fig. 8. Classification of the voltage level using the k-NN algorithm and
different pre-classification methods.

It can be seen that the misclassification is the highest for a
source voltage above 13 V. This may be caused by low
signal change dynamics at this voltage range. The k-NN

algorithm is characterised by the fact that it cannot
distinguish voltage changes that are different from the ones
that it was prepared to classify. This means that for any
voltage supply that is different from 10 V to 14 V with a
step of 0.5 V, it will give additional error, which is not
dependent on misclassification issues, but rather on the inner
algorithm structure. That is the main disadvantage of using
such a method.

Based on the Table I, it can clearly be seen that using the
wavelet transform's approximation coefficients gives the
best classification results for the k-NN algorithm. The
second best is the naive Bayes method and the worst – as
expected – the simple signal decimation.

Another approach to the classification problem is the use
of the artificial neural network backpropagation algorithm.
Such an algorithm has an advantage over k-NN as it can
distinguish any voltage from certain bounds and can classify
it not only on certain subgroups with 0.5 V step. Such a
neural network can be trained in very different ways. From
various the backpropagation networks that can used (feed-
forward, Elman and cascade-forward), the best output was
found for the cascade-forward with five hidden neurons. For
the naive Bayes, the vector has 27 elements and for the
downsampling signal, it has 26 elements – the vectors’
lengths were selected arbitrarily during multiple
experiments. For the wavelet transform, the length was set
to 25 elements, which is based on the transform’s nature.
One element output vector represents the actual analog input
voltage level value.

The neural network trained with the same sets of data that
was used for the k-NN algorithm gave the voltage drift
results that are presented in Fig. 9.

Fig. 9. Identification of the voltage level using the cascade-forward
backpropagation neural network and different pre-classification methods.

Surprisingly, the input vector of the wavelet
approximation coefficient values provided the poorest result
– this may be caused by its high sensitivity to minor changes
in the waveforms on which the neural network is based. At
voltage source values greater than 13 V, the change
dynamics are not significant compared to the rest of the
signal and the wavelet transform’s error is thus small (below
0.5 V). On the other hand, the naive Bayes pre-classification
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algorithm performed much better than the k-NN and gave
the best match of all. The simple decimation gave a similar
average error as in k-NN, but the maximum error of almost
0.9 V disqualified it from being a reliable source for
assessing ADAS sensors. The comparison of those values is
presented in Table I below – the best match is written in
italics.

TABLE I. K-NN CLASSIFICATION AND NEURAL NETWORK
IDENTIFICATION PERFORMANCE COMPARISON.

Algorithm Pre-classification
algorithm

Maximum
error [V]

Average
error [V]

K-NN Decimation 0.5 0.15
K-NN Naive Bayes 0.4 0.13
K-NN Wavelet 0.3 0.12

Neural network Decimation 0.89 0.16
Neural network Naive Bayes 0.26 0.07
Neural network Wavelet 2.39 1.10

The table shown above represents the performance
of different algorithms (including pre-classification as well)
of the entire signal domain. To examine those processes
more deeply, such analysis should also be performed on the
subsets of the domain (e.g. to localise the weakest links in
the system or to find the cause of such poor behaviour).
For such an analysis, two of the best fitting algorithms can
be used – neural network with the naive Bayes pre-
classification and k-NN with wavelet pre-classification. The
following Table II compares their error relations for certain
subsets (best values are written in italics).

TABLE II. COMPARISON OF ERROR ON THE VOLTAGE SUBSETS
FOR THE TWO LEADING METHODS.

Supply
voltage

range [V]

Mean classification error
[mV]

Max. classification error
[mV]

K-NN
(wavelet)

Neural
network
(naive
Bayes)

K-NN
(wavelet)

Neural
network
(naive
Bayes)

10 – 10.5 140 30 300 60
10.5 – 11 120 118 200 178
11 – 11.5 120 40 200 53
11.5 – 12 120 70 200 110
12 – 12.5 120 29 200 65
12.5 – 13 120 38 200 72
13 – 13.5 133 157 300 266
13.5 – 14 131 131 300 266

Based on the table above, it can be seen that apart from
the mean errors in the subset from 13 V–14 V, the neural
network with the naive Bayes feature extraction algorithm
performs better than k-NN with a wavelet pre-classification.
What can be seen as well is the fact that both algorithms
perform best in the middle of the domain (11 V–13 V) and
worse when reaching the voltage boundaries. This behaviour
is completely acceptable from the automotive usage point of
view, as during the vast majority of time, the voltage does
not strongly vary from 12 V. The crucial part of the received
data (maximum error) can also be shown on a bar plot
(Fig 10).

Both classification methods provided output that was
sufficient enough to be used in evaluating ADAS’ modules
readings. Moreover, in order to enhance the classification,
both methods can be used simultaneously – complementary

to each other. Combining two or even more methods, which
are highly different from one another, increases the certainty
of a final classification – each method can be sensitive to
different factors (e.g. temperature or aging). Such a solution
would require the use of some kind of data fusion method –
e.g. the Kalman filter. A schematic diagram of such merging
would look like that below (Fig. 11).

Fig. 10. Maximum classification voltage drift for k-NN with the wavelet
transformation algorithm and a neural network with the naive Bayes
pre-classification.

Fig. 11. Graphical representation of merging of classification data.

The data processed in such a manner is resistant to the
uncertainty of a particular method, which results in a higher
reliability of the classification data. The final output in such
a shape is ready to be fed into the last section – the ADAS
the assessment module for the sensor readings.

V. EVALUATION OF THE RELIABILITY OF SENSOR READINGS

Having developed the classification system, the final step
that is required to successfully assess the reliability of the
ADAS sensor readings is to insert a received current
waveform of a specific module into the classification
algorithm. When the output data that is related to its
environment (operating temperature, supply voltage level,
aging) is generated by the algorithm based on a signal, the
next step is to compare those values to the real-world ones.
Based on this comparison, the accuracy level of a reading’s
reliability for a certain sensor can be determined – the
current waveform of a damaged sensor would behave
differently than an intact one. A block diagram of such an
approach is presented in (Fig. 12)

The comparison algorithm block represents a function
that establishes a reading’s reliability based on the
difference between the real-world data (e.g. data acquired by
a voltmeter or thermometer) and the classification data –
voltage or temperature based on an input waveform. The
bigger the difference for a certain feature – the lower the
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reading’s reliability should be.

Fig. 12. Conceptual diagram of the assessment of the reliability level for
ADAS sensor readings.

To assign a certain reliability level to a particular current
waveform, a function that converts the deviation to
a percentage reliability value has to be developed. Such
a function can be, for example, linear (4), Gaussian (5) or
window (6):
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Based on the equations presented above, a reliability
assessment plot can be created (Fig. 13). With a change of
coefficient n in the equations, a certain plot can be adjusted
for a specific sensor (each ADAS module’s behaviour is
different and the choice of a method and its width strictly
depends on its type).

Fig. 13. Comparison of different conversion curves.

For the curves shown above (for linear conversion
n = 0.4, for window n = 1, for Gaussian n = 1), the reliability
of exemplary reading for specific voltage drifts are shown in
Table II.

Each of the presented methods has its advantages and
disadvantages – the decision of which method to choose
should be based on the needs of a particular application.

TABLE III. RELIABILITY OF THE READINGS FOR CERTAIN
CONVERSION CURVES.

Voltage drift
[V]

Predicted reliability value [%]
Linear

conversion
(n = 0.4)

Window
conversion

(n = 1)

Gaussian
conversion

(n = 1)
-1.5 40 0 33
-1 60 100 61

-0.5 80 100 88
0.1 96 100 99
0.7 72 100 78
2 20 0 14

VI. CONCLUSIONS

The presented paper has shown that the evaluation of
accuracy of an ADAS module’s readings can be based on
transient current analysis and the application of a neural
network. Moreover, more than one way of classification and
pre-classification appears to exist, which shows a method’s
versatility and creates a field to develop in the future thus
enhancing classification methods. For assessing the
reliability of an ADAS sensor’s readings, the two best
methods were the k-NN classification with wavelet
transformation as a feature extraction and the cascade-
forward backpropagation neural network with the naive
Bayes pre-classification algorithm. Those methods,
alongside the final conversion curves, have to be selected
independently for the needs particular application, as the
methodology presented in the paper can also be used in non-
automotive fields as well.
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