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1Abstract—The paper describes PI controllers tuning for
unstable first order time delay processes and integral plus time
delay plant. The suggested method for designing a PI controller
is based on the pole assignment method. Conditions for
selecting the PI controller parameters in the function of the
desired poles and parameters of the plant are met by using the
features of the Lambert W function. The system stability in
feedback is guaranteed by selecting the desired poles of the pre-
defined range. The determined scope for pole selection includes
the condition that this controller operates without integral gain,
merely as proportional. The overshoot is reduced by using the
simple first-order set-point filter. The manner of selecting the
initial matrix which is used in a LambertW_DDE toolbox has
been proposed. The illustrations of the simulation have been
provided. Performances of the system regulated with a
suggested PI controller are compared with the results received
from other methods wherefrom it may be seen that this method
yields better results in terms of the system settling time, rise
time and IAE, ISE for set-point and good results in term of
IAE, ISE for load disturbance and for the robustness on the
uncertain changes expressed by the process parameter change
of 10 %.

Index Terms—Pole assignment; PI controllers; Time delay;
Unstable FOPTD processes; Integral plus time delay plant.

I. INTRODUCTION

Proportional-integral-differential (PID) or Proportional-
integral (PI) controllers have been used for the regulation of
the processes in the industry for years now [1]. It is well-
documented that they are used with time-delay processes,
too, and that the presence of time-delay in continual systems
renders the application of the traditional methods of analysis
and the projection within a time and frequency area largely
complex. A number of different methods of parameter
selection for these controllers, which can be found in
different reference books or scientific papers, in [2]–[10],
inter alia, have been developed over the years. The
identification and control of unstable time delay processes
has been notably examined in numerous studies among
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which are the papers [11]–[13].
In this study, the synthesis of the PI controller was

performed by using a pole placement method with the
features of Lambert W function described in [14] and [15].
A characteristic system equation was solved by using the
matrix Lambert W function described in [16], [17] by
following exceptional cases during the application of the
matrix Lambert W function explained in the stability
analysis in [18].

The proportional and integral PI controller gain is
provided in the function of the desired poles and parameters
of the integral plus time delay plant (IPTD) and unstable
fist-order process with time-delay (UFOPDT). Boundary
conditions for the selection of the desired conjugate-
complex or real poles have been set, and they comprise the
condition for the controller to operate as a proportional
controller. The illustrative examples of the response of the
PI control of UFOPDT for different values of the desired
poles and the confirmation of the boundary conditions were
received via simulation.

Considering that during the application of the
LambertW_DDE toolbox, the problem may arise by
inadequate selection of the initial matrix Q, the method of its
selection has been put forward (Yi, Duan, Nelson, and Ulsoy
(2012) in the function of the desired poles, which solves the
problem.

It is well known that during the regulation with UFOPDT
helped by a PI controller there is a great overshoot, and that
the overshoot cannot be reduced by adding a set-point first-
order filter. For different values of the time constant of the
simple set-point filter, in the function of the relation of the
proportional and integral part of the controller, a response
received by simulation has been given.

Performances of the system regulated with a PI controller
received through the suggested projection method have been
compared for IPTD plant with the results received from the
methods given in [8], [9], while for UFOPTD plant with the
result in [11], wherefrom it may be seen that this method
yields better results.

The paper is organized in the following way: Chapter II
gives a design of the PI controller, whereby in the first part
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there is a short description of the Lambert W functions,
while in the second part a procedure for solving the
characteristic equation has been given, and in the third, the
conditions and the methods of selection of the dominant
poles, PI controller parameters and initial matrix Q
parameters, have been provided. In the third part, the
selection of the desired poles for time delay for an IPDT
plant is represented which is used for the most optimal
results both for set-point tracking and for the disturbance
reaction. In the fourth part of chapter II, two methods of
synthesis are shown. In Chapter III, the results received by
simulation for UFOPTD have been shown. In the first part,
the results of the response in the presence of the disturbance
for different pole values are given, IAE of the output,
Overshoot of the output, Total variation of the input, for the
set-point and load disturbance. The second part illustrates
the results received in simulation by using a set-point first-
order filter for different values of its time constant, and in
the third section, there is a confirmation of the boundary
condition for the selection of the imaginary part of the
desired poles has been presented by using a simulation. In
chapter IV, the analysis received by controlling IPDT and
UFOPTD processes on the suggested way is given in parallel
with the results received with other methods. Chapter V
provides a conclusion and suggestion for a further analysis.

II. THE PROPOSED METHOD

A. Lambert W Function
Lambert W function W(z) is the solution of the equation

( )( ) ,W zW z e z (1)

where .z C If z belongs to a set of complex numbers C, the
function has an infinite number of solutions, as well as an
infinite number of branches Wk(z) where kϵ(- , ). Only
W0(z)-principal branch for k = 0, and branches W-1(z) for
k =-1, take real values (Fig. 1).

Fig. 1. Two main branches of the LambertW function for z ϵ R.

W0(z) is analytic at the point of zero, which ensues from
the Lagrange’s inversion theorem which provides the series
expansion with the radius of convergence e-1
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A differential of the Lambert W functions was obtained
by applying the Ranger’s technique

( )( ) ,
(1 ( ))

W zW z
z W z

 


(3)

where 0z  . A more detailed explanation of the method of
solution (1) and the branch range Wk(z) can be read in
Corless, Gonnet, Hare, Jeffrey and Knuth (1996).

B. Synthesis of PI Controller
Let the processes with time delay be described by transfer

function

( ) ,s
p

KG s e
Ts a




(4)

where K is the plants’ gain, T is the time constant, θ is the
time delay and a is a coefficient.

If a = 1, the transfer function (4) becomes the transfer
function of the UFOPTD, while the transfer function of the
IPTD can be received from (4) for a = 0 and T = 1.

These processes can be suitably controlled by using a PI
controller, Fig. 2. where Kp and Ki are gain coefficient of the
proportional and integral part of the controller, with the
transfer function

( ) ,i
c p

K
G s K

s
  (5)

which in the time domain corresponds to

0
( ) ( ) ( ) ,

t
p iu t K e t K e t dt   (6)

where e(t) = r(t) - y(t) and y(t) is the output signal of the
coupled system with the negative feedback of the unit, u(t) is
a control signal, and r(t) is a reference signal.

In a time domain, the feedback system can be described
through second-order Delay-Differential Equations (DDE)

( ) ( ),d
dx Ax t A x t
dt

   (7)

with belonging matrices:
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(8)

The solution of the characteristic system equation

0,kS
k dS A A e    (9)

4



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 24, NO. 2, 2018

where Sk ϵ C2x2, is received by translating (9) into Lambert
W form

( )( ) ,kS A
k d kS A e A Q   (10)

whereby the unknown matrix Qk ϵ C2x2 which needs to satisfy

( ( ) )( ) .d kW A Q A
d k dW A Q e A    (11)

Fig. 2. Control system with PI controller.

A generic form of the solution of the characteristic
equation (9) is

1 ( ) ,k k d kS W A Q A

  (12)

where k denotes a Lambert W function branch.
By simultaneously solving (11) and (12) for the desired

poles, PI controller parameters are obtained.

C. Boundary Range for Selection of Controller Poles and
Parameters

Let the desired poles λ1/2 = Re{λ} ± jIm{λ} be conjugate-
complex and let the unknown matrix be

11 12

21 22
.k

q q
Q

q q
 
  
 

(13)

The generic solution form (12) of the characteristic
system equation (9) can be presented in the form of

1 2 1 2

0 1
.kS

   
 
    

(14)

Let

21 22

0 0
.dM A Q

m m


 
  
 

(15)

From (10) and (15) it transpires that:
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 

(16)

It can be noticed from (16) that wk(m22) < 0 and wk(m22) ϵ
R, considering that due to stability the condition Re{λ} < 0
needs to be fulfilled. Depending on the value of wk(m22), the

same corresponds to the branch k = 0 for -1 < wk(m22) < 0 or
the branch k = -1 if wk(m22) < -1. Taking into consideration
that the principal branch k = 0, from (16) and the stability
conditions, it follows that the real part of the desired
conjugate-complex pole can be selected within the
boundaries

1 1( ) { } 0.
2 e

a R
T



   (17)

For the selected Re{λ}, the value of the desired imaginary
conjugate complex pole is received by solving

1
{ }

tan( { }) .
{ }

m
m

e

I
I

aT R








(18)

The received value Im{λ} represents a boundary condition
of the existence of the integral amplification coefficient of
the PI controller, which can be illustrated.

By replacing (8) and (16) with (11), and with a
mathematical operation, formulas for calculation of the gain
of the proportional and integral part of the PI controller in
the function of the desired poles and UFOPDT and IPTD
plant parameters are received:

2 12 2 1 1
1 2

( ( ) ( ) ),
( )p

T a aK e e
K T T

    
 

   


(19)

1 21 2
1 2

1 2
(( ) ( ) ).

( )i
T a aK e e

K T T
  

 
 

   


(20)

In this way, the controller parameters are received directly
without using LambertW_DDE toolbox for whose
application it is sometimes very difficult to determine the
initial matrix Q.

Considering that there is an infinite number of matrices Q
(13) which can satisfy (11) and (12), we may, without the
influence on the generality loss, take q11 = q12 = 1. By
replacing (8) and (13) with (15), then by applying (16), and
with a mathematical operation on the received formulas, by
using a definition of the Lambert W function, what is
received is:

1 2

1 2

( )1 2
21

( )
22 1 2

1 ( ),

1 ( ( ) ).

a
T i

p
a
T i

p

Tq e K
K K

T aq e K
K K T
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 

 

 

 


  




    


(21)

By replacing (19) and (20) with (21) the initial matrix
coefficients Qinitial in the function of the desired poles and
UFOPDT parameters are received. Defining of the initial
matrix in this way significantly alleviates the application of
the LambertW_DDE toolbox for finding for example the rest
of the poles for branches k = ±1, ±2, ±3…

Let the desired poles be λ1 = Re{λ1} + j0 i λ2 = Re{λ2} +
j0, i.e. let the both poles be real. Considering that for the
principal branch of the Lambert W function k = 0 stands that
-1 < wk(m22) < 0, from (16) what follows is
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1 21 ( ) 0.a
T

       (22)

From (22) and the stability conditions saying that the both
poles must be in the left semi-plane of the complex s-plane,
boundary conditions for the selection of the desired real
poles transpire

1 2
1 0.a

T
 


    (23)

The proportional and integral PI controller gain is
received in case of real poles, too, by applying (19) and (20),
and the initial matrix Q is received with (21).

Considering that (17) and (23) it can be inferred that the
suggested method can be used only if the time constant of
the UFOPDT process is greater than the time delay T > θ.

By analysing different IPDT plants, it has been
determined that good results are received by using the
boundary condition for the real part of the pole (17), that is,
by selecting the desired pole values

1/2
0.5 0.25 .j


 
 (24)

By replacing a = 0 and T = 1 in (19) and (20) for the
selected poles (24), the gain of the proportional and integral
part of the PI controller for IPDT plant are received
respectively from:

2 12 2
2 1

1 2

1 ( ),
( )pK e e

K
  

 
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
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1 21 2
1 2

1 2
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( )iK e e
K

  
 

 
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
(26)

D. Synthesis of Set-Point Filter
For eliminating the overshoot, which occurs when using

the PI controller at the considered processes, can be added to
the set-point filter of the first order transfer function Gf(s), as
shown in the Fig. 3.

Fig. 3. Control system with PI controller and set-point filter.

Basic form of the transfer function of the filter, where b of
a set-point weight coefficient is

1
( ) .

1

p

i
f

p

i

K
b s

K
G s

K
s

K





(27)

From the equation (27) it can be noticed that by
implementing the filter for b = 0, shortening the denominator

of the transfer function of the filter with the zero feedback
transfer function of the PI controller and plant, while the
system shown in Fig. 3, for b = 1, behaves in the same way
as the system shown in Fig. 2, that is, there is a classic
control of the plant with the PI controller.

Setting the filter is done by setting the set-point weight of
the coefficient b, which usually ranges between 0.2 and 0.5.
At IPDT plant good results are obtained by b = 0.3-0.4.

For a UFOPTD process, a set-point filter can also have
transfer functions

1( ) ,
1f

f
G s

T s



(28)

where ,p
f

i

K
T n

K
 Tf is a time constant of the filter which

can be expressed as the function of the gain of the
proportional and integral part of the controller, where n ϵ
R+.

III. RESULTS RECEIVED BY SIMULATION FOR UFOPTD

A. Responses for a PI-Control of UFOPDT in the Presence
of the Disturbance for Different Values of the Desired Pole

A UFOPTD process has been evaluated, with parameters
K = 1, T = 5, θ = 1, from Shamsuzzoha and Skogestad
(2010).

Let the desired poles be conjugate complex. By applying
(17) the range for selecting a real part of the desired pole is
received

0.4 { } 0.eR    (29)

Let Re{λ} = -0.35. By applying (18) we find a boundary
condition for selecting an imaginary part of the desired pole
Im{λ} < 1.1112.

Responses for PI-control of the unstable first-order time
delay process where a set-point change at t = 0, load
disturbance of magnitude 1 at t = 40, is given in Fig. 4.

Fig. 4. Responses for a PI-control of the unstable first-order time delay
process in the presence of the disturbance for different values of the
imaginary part of desire pole.

The received parameters of the PI controller and the set-
point results, for the three desired pole with the same real,
and with a different imaginary part, Re{λ} = -0.35 Im{λ} ϵ
(0.25; 0.35; 0.5) are shown in Table I, while the Load
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disturbance results have been presented in Table II.

TABLE I. RESULTING PI CONTROLLER FOR RE{Λ} = -0.35,
SETPOINT.

Imag.
part of

the
pole

Im{λ}

Prop.
gain
Kp

Integ.
gain
Ki

IAE
of the

output (y)

Total
variation

of the
input (u)

Overshot
of the
output

(y)

±0.25 2.619 0.277 7.37 7.06 1.89

±0.35 2.737 0.346 6.76 7.81 1.93

±0.50 2.977 0.459 6.14 9.28 1.98

TABLE II. RESULTING PI CONTROLLER FOR RE{Λ} = -0.35, LOAD
DISTURBANCE.

Imag.
part of

the
pole

Im{λ}

Prop.
gain
Kp

Integ.
gain
Ki

IAE
of the

output (y)

Total
variation

of the
input (u)

Overshot
of the
output

(y)

±0.25 2.619 0.277 3.68 2.80 1.56

±0.35 2.737 0.346 3.05 2.92 1.53

±0.50 2.977 0.459 2.40 3.13 1.49

From Table I and Table II, and from Fig. 4, it can be
observed that for the constant real part of the desired pole,
by increasing an imaginary part of the pole, a set-point
overshoot rises, while the peak value of the output falls,
which implies a better disturbance compensation.

The received PI controller parameters and the set-point
results, with three desired poles with the same imaginary
part Im{λ} = ±0.35, and with a real part Re{λ} ϵ (0.2; 0.3;
0.4), are shown in Table III, while Load disturbance findings
are illustrated in Table IV, and the response in Fig. 5.

TABLE III. RESULTING PI CONTROLLER FOR IM{Λ} = -0.35,
SETPOINT.

Real
part of

the
pole
Re{λ}

Prop.
gain
Kp

Integ.
gain
Ki

IAE
of the
output

(y)

Total
variation

of the
input (u)

Overshot
of the
output

(y)

±0.2 2.478 0.364 8.24 8.40 2.00

±0.3 2.684 0.354 7.00 7.94 1.94

±0.4 2.763 0.333 6.68 7.66 1.91

TABLE IV. RESULTING PI CONTROLLER FOR IM{Λ} = -0.35, LOAD
DISTURBANCE.

Real
part of

the
pole
Re{λ}

Prop.
gain
Kp

Integ.
gain
Ki

IAE
of the
output

(y)

Total
variation

of the
input (u)

Overshot
of the
output

(y)

±0.25 2.478 0.364 3.76 3.38 1.57

±0.35 2.684 0.354 3.15 3.01 1.54

±0.50 2.763 0.333 3.06 2.85 1.53

From Table III and Table IV, and from Fig. 5, which
shows the response with the disturbance taking place in the
same time and with the same amplitude level as in the
previous example, it is clear that with bringing closer of the
pole to the imaginary complex axis from the plane during the
constant imaginary part of the pole, more negative
characteristics, a greater overshoot and a worse disturbance
compensation, are received, which is what IAE and TV

indicate.

Fig. 5. Responses for a PI-control of the unstable first-order time delay
process in the presence of the disturbance for different values of the real
part of desire pole.

In case of the desired real poles, the boundary condition
for their choice -0.8 < λ1 +λ2 < 0 is received by applying
(23).

Set-point results for three different selections of the
desired real poles and PI parameters are given in Table V,
and Load disturbance results are revealed in Table VI.

TABLE V. RESULTING PI CONTROLLER FOR REAL Λ, SETPOINT.

Pole
{λ}

Prop.
gain
Kp

Integ.
gain
Ki

IAE
of the
output

(y)

Total
variation

of the
input (u)

Overshot
of the
output

(y)

-0.39
-0.41 2.547 0.214 8.374 6.478 1.85

-0.3
-0.4 2.488 0.191 8.997 6.257 1.84

-0.2
-0.3 2.281 0.129 11.688 5.709 1.86

TABLE VI. RESULTING PI CONTROLLER FOR REAL Λ, LOAD
DISTURBANCE.

Pole
{λ}

Prop.
gain
Kp

Integ.
gain
Ki

IAE
of the
output

(y)

Total
variation

of the
input (u)

Overshot
of the
output

(y)

-0.39
-0.41 2.547 0.214 4.66 2.70 1.58

-0.3
-0.4 2.488 0.191 5.24 2.69 1.60

-0.2
-0.3 2.281 0.129 7.76 2.70 1.67

Fig. 6. Responses for a PI-control of the unstable first-order time delay
process in the presence of the disturbance for the real part of desire pole.
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Responses of the unstable first-order time delay process
under PI control where the set-point change is at t = 0, load
disturbance of magnitude 1 at t = 40, is given in Fig. 6.

Responses for a PI-control of the unstable first-order time
delay process from Fig. 6, and the results from Table V and
Table VI shows that in case of the selection of the real poles
a longer settling time and much worse IAE of the output is
received compared with the PI-control of the same process
where controller parameters are received by choosing
conjugate complex poles.

B. Responses for a PI-Control of UFOPDT for Time
Constant Filter Different Values

The responses in Fig. 4, and Fig. 5 show that with PI
controller application at UFOPTD is necessary to eliminate,
i.e. reduce the overshoot for tracking a set point.

For selected poles λ1/2 = -0.35 ± 0.5j, in Fig. 7, the
response of UFOPDT is illustrated regulated by the PI
controller with and without the first-order filter (28). By
increasing the time constant of the filter, a minor overshoot
is received, which is seen in Fig. 7.

Fig. 7. Responses for a PI-control of the unstable first-order time delay
process for different values of filter time constant.

C. Confirmation of Boundary Conditions of the Imaginary
Part of the Pole

For a desired real part of the pole of the observed
UFOPTD process, Re{λ} = -0.3 by applying (18) boundary
conditions for the imaginary part of the desired pole Im{λ} =
1.16556 is received.

The received controller parameters, in case when the
imaginary part of the desired pole is greater or smaller for 5
percent than a boundary condition, are given in Table VII,
and the response is shown in Fig. 8.

Fig. 8. Responses for a PI-control of the unstable first-order time delay
process for different values of desired pole.

TABLE VII. PI CONTROLLER SETTINGS FOR THE PROPOSED
METHOD.

Desired pole
λ ½

Proportional
gain Kp

Integral
gain Ki

-0.3 ± 1.10728j 4.5447 0.2105
-0.3 ± 1.16556j 4.6978 ~0
-0.3 ± 1.22384j 4.8438 -0.2598

The example shows that the boundary condition (18) for
selection the imaginary part of the desired pole precisely
specified. By increasing the imaginary part of the desired
pole in comparison with the boundary condition, the system
becomes unstable, and by reducing it, the system becomes
stable.

If the imaginary part the same as the boundary condition
from (18), the gain of the integral part of the PI controller is
around zero, so UFOPDT is regulated only with the
proportional amplifier. The system received in such a way is
stable but it cannot reach the referential value. Reaching the
referential value and the reduction of the overshoot can be
achieved by adding the first-order filter:

( ) ,
1

,

1
,

f
f

f

f p

p
f

p

K
G s

T s

T nK

KK
K

KK





 
  


(30)

which can be noticed in Fig. 9.

Fig. 9. Responses for a P-control of the unstable first-order time delay
process for different values of the time constant filter.

IV. COMPARING THE RECEIVED RESULTS

A. Comparing the IPDT Processes Control
Example 1.
In paper [8], the IPDT process has been demonstrated by

using the transfer function

50.05( ) ,s
pG s e

s
 (31)

for which, by using the proposed multiple dominant pole
method, the received 2DOF PI controller are given in (32).

By selecting the desired poles in the given way by using
the equation (24), 1/2 0.1 0.05 ,j    is received
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wherefrom by replacing (25) and (26) the necessary gain of
the PI controller, Kp = 1.9005 and Ki = 0.0719. By replacing
the received values into the equation (27) the set-point filter
transfer function is received:

1( ) 1.84(1 ),
29.14

29.14 1( ) ,
29.14 1

0.29,

c

f

G s
s

b sG s
s

b

  


 





(32)

26.4367 1( ) ,
26.4366 1

0.4.

f
b sG s

s
b

    

(33)

Closed loop response of the system with or without the
filter (b = 1), where 2DOF is the response received by using
the method given in [8] and with PI the response received by
using the proposed way of controller projection is shown in
Fig. 10 wherefrom it can be clearly noticed that the response
of the system regulated in the suggested way has
considerably shorter settling time (Ts = 34 s) and the time of
the increase (Tr = 19.7 s) compared with the method with
which it has been compared (Ts = 53.4 s i Tr = 28.7 s).

Fig. 10. Responses for a PI-control of IPDT plant with or without filter.

The response of both systems with the proposed controller
parameters and the filters with disturbance which occurs at
t = 150 s is given in Fig. 11.

Fig. 11. Responses for a PI-control of IPDT plant in the presence of the
disturbance.

In Table VIII, the values of the errors of the IAE and ISE
for the set-point and load disturbance is given, wherefrom it
can be deduced that the proposed method yields more
optimal reaction to the disturbance effect.

TABLE VIII. VALUES OF IAE, ISE FOR SET-POINT AND LOAD
DISTURBANCE.

Set-point Load disturbance
IAE ISE IAE ISE

2DOF PI controller 20.689 14.296 15.837 5.541

Proposed method 16.492 11.994 13.930 4.868

Example 2.
In paper [9], a comprehensive analysis of different PI

controllers for IPDT processes, inter alia, for

1( ) .s
pG s e

s
 (34)

For which, by using the triple real dominant pole (TRDP)
method 2DOF PI controller are received:

1( ) 0.461(1 ),
5.828

5.828 1( ) ,
5.828 1

0.293.

c

f

G s
s

b sG s
s

b

  


 





(35)

By applying (24)–(26) onto the above-mentioned way the
PI controller parameters are received as well as by using the
proposed method to receive the following parameters:

0.0899( ) 0.4751 ,

5.2873 1( ) ,
5.2873 1

0.4.

c

f

G s
s

b sG s
s

b

  


 





(36)

The system response onto which the disturbance of the
amplitude at t = 20 s is shown in Fig. 12, while the error
values of IAE, ISE for the set-point and load disturbance are
given in Table IX.

Fig. 12. Responses for a PI-control of IPDT plant in the presence of the
disturbance.
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TABLE IX. VALUES OF IAE, ISE FOR SET-POINT AND LOAD
DISTURBANCE.

Set-point Load
disturbance

IAE ISE IAE ISE
2DOF PI controller 4.120 2.850 12.642 17.656

Proposed method 3.302 2.405 11.144 15.576

In paper [9] the analysis is conducted of seven different PI
controllers for IPDT plant observed transfer functions with
responses given in image 6 and 7 (pp. 509), and the
Performance measures of particular controllers given in
Table (pp. 508).

By comparing the results given in [9], with the proposed
method of projecting the PI, it can be clearly deduced that
the proposed way yields the most optimal results in terms of
the set-point of the IAE, more optimal IAE for load
disturbance from the methods TRDP, SIMC1, AMIGO and
MaShe.

B. Comparing the Control of the UFOPTD Processes
Example 3.
In paper [11] pp. 425, the UFOPTD process of the

transfer function has been considered

0.41( ) .
1

s
pG s e

s



(36)

For which Majhi and Atherton projected a serial PI
controller with Kp = 2.243, Ti = 4.627, and Ho et al. with
Kp = 1.69, Ti = 14.38.

By using the boundary conditions (17) and (18), the
desired poles have been selected at the proposed method of
projecting the parallel PI controller 1/2 0.075 1.393 .j   
By replacing (19) and (20) Kp = 1.7486, Ki = 0.3419 are
received.

The responses for unit step input and for a step load
disturbance of magnitude 0.5 are shown and compared in
Fig. 13.

Fig. 13. Responses for a PI-control of UFOPDT plant in the presence of
the disturbance.

The responses for a +l0 % perturbation in the delay θ and
in the process gain K are shown in Fig. 14.

Fig. 14. Robust responses for PI-control of UFOPDT plant.

It can be concluded that the proposed method yields better
results even in when there are uncertain changes shown by
applying perturbation of 10 % in the UFOPTD process
parameters.

V. CONCLUSIONS

The proposed method of setting the PI controller for IPDT
and UFOPTD processes turned out to be extremely simple to
apply and efficient while using the boundary conditions for
selecting the conjugate complex poles. The efficiency of the
method is practically reflected in more optimal
performances, i.e. the lower IAE and ISE index for the set-
point and load disturbance, and better robustness onto the
unknown process parameter changes which had been
examined for the 10 % time delay change, compared with
the 2DOF PI and serial PI controller.
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