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Abstract—The paper proposes and evaluates an improved 

genetic algorithm (GA) dedicated to maximize the bandwidth of 

a specified, previously discovered, route in a Time Division 

Multiple Access (TDMA)-based Mobile Ad Hoc networks 

(MANETs). The objective is also to increase the speed of 

convergence of the GA by adequately choosing the genetic 

operators, as well as the crossover and mutation probabilities. 

Simulation results show that the proposed solution outperforms 

the existing ones, with acceptable computational costs. 

 
Index Terms—Genetic algorithms, scheduling algorithm, 

time division multiplexing, wireless networks.  

I. INTRODUCTION 

The design of routing algorithms in ad hoc networks has 
attracted extensive research efforts aiming at finding the 
most appropriate path between a source node and a 
destination one, a quite challenging task due to their fast 
changing topologies. Most of the proposed routing 
algorithms were focused on discovering the shortest path 
and, until recently [1], [2], did not address issues related to 
the end-to-end Quality of Service (QoS) requirements of the 
involved communication services [3]. It was proved that the 
calculation of the available bandwidth of a path in a TDMA-
based ad hoc network is NP-complete (nondeterministic 
polynomial time) [4] and the optimal solution could not be 
found in a realistic time interval. As a consequence, efforts 
were directed towards finding efficient heuristic algorithms 
for the estimation of the maximal available bandwidth along 
a discovered path.  

The objective of this work is to devise an efficient genetic 
algorithm (GA) able to maximize the bandwidth of a 
previously discovered path in a TDMA-based ad hoc 
network, provisioning resources along the entire path in 
accordance with the service requirements. We investigate the 
possibility to improve the performances of GA used to solve 
the bandwidth calculation problem in TDMA-based ad hoc 
networks.  

Simulation results show that the proposed solution 
outperforms existing algorithms, with acceptable 
computational costs. 
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II. TDMA SCHEDULING PROBLEM 

A TDMA communication network is very demanding in 
terms of packet scheduling because transmissions from 
different nodes are very likely to collide if adequate 
precautions are not taken into consideration and the hidden 
terminal problem is not correctly addressed. Hence, more 
coordination among nodes is required. In our study it is 
assumed that all the nodes share a single common channel.  

Several attempts have been made to solve the problem of 
bandwidth calculation in TDMA-based MANETs [5]–[8].  

In [5] the design of an efficient heuristic algorithm for the 
calculus of the maximal available bandwidth along a path in 
a TDMA-based MANET is presented. The available 
bandwidth is calculated in a centralized manner as it has 
been proved that the hop-by-hop calculation yields usually a 
smaller bandwidth than the one obtained by a centralized 
technique [6]–[8].  

One of the first and most valuable approaches to solve 
optimum TDMA transmission schedule in broadcast packet 
radio (PR) networks using GA is that in [9]. For an n-node 
PR network, a chromosome is represented by the TDMA 
frame itself that is an nxn binary matrix. A special crossover 
operator was devised so that invalid solutions are not 
created. The basic optimization objective was to determine 
the smallest length TDMA frame, for the case when many 
nodes are allowed to transmit simultaneously, conflict free, 
in a single time slot.  

In a TDMA-based ad hoc network, the transmission time 
is divided in fixed length frames consisting of a fixed 
number of slots. Each of the time slots carries one packet. 
The bandwidth requirement is fulfilled by reserving time 
slots on links. Assuming a half-duplex operation mode, a 
node cannot transmit and receive simultaneously. Each node 
marks a slot in a frame with either “U,” if the slot is 
unavailable or “F,” if the slot is free (available). All the slots 
that are free at both ends of a link form the set of paired free 
slots of the link. The available bandwidth of a link is the 
number of slots in this set. In a TDMA-based ad hoc 
network, in addition to the constraint of the half-duplex 
operation mode, it is compulsory to take into account the 
radio interference produced by hidden terminals, as the use 
of a free slot on a link is dependent on the status of that slot 
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in the neighboring links. The bandwidth of a path between 
two nodes is defined as the minimum number of reserved 
slots for a link among the links included in the path. The 
reserved slots are selected from the set of the paired free 
slots taking into account the constraints imposed by the half 
duplex operation and the presence of hidden terminals. 
Hence, the path bandwidth is not simply the minimum link 
bandwidth along the path; its finding is an NP-complete 
problem.  

The status of each time slot for each host in a path can be 
represented as a node state matrix. The status of each time 
slot for each link can be described by a link state matrix 
(denoted as the free slot matrix), whose element (i, j) is 
marked with “F”, if the slot j is marked as free (available) by 
both of the nodes adjacent to the link i, and marked with “U” 
(unavailable), otherwise.  

Given a free slot matrix, one can construct a slot schedule 

matrix containing for every link the slots which have been 
reserved for the communication.  

For numerical manipulation of the state matrix the 
elements corresponding to unavailable slots are marked with 
“2”. A free slot can be reserved for a packet transmission 
along the corresponding link and the associated state matrix 
element is changed to “1”. A slot marked with “F” can be 
reserved only by one of the adjacent links due to the 
assumed half-duplex operation mode.  

So, during the slot reservation process, any time a link 
reserves a slot and marks it with “1”, the adjacent nodes 
should mark the same slot with “0”, as it becomes 
unreservable for them. 

Considering, for instance, a path with five links and a 
frame with eight time slots, the node state matrix is a 6 x 8 
matrix (Fig. 1(a)), whereas the link state matrix is a 5 x 8 
matrix (Fig. 1(b)). 

For the state matrix associated to the case presented in 
Fig. 1(a) the sets of free slots for the individual links are 
(Fig. 1b): {2, 3, 6, 7} for link a – b, {1, 3, 4, 6, 7} for link b 

– c, {1, 3, 5, 7} for link c – d, {1, 2, 3, 5, 7, 8} for link d – e, 
and {2, 4, 5, 6, 8} for link e – f, with link bandwidth 
equaling 4, 5, 4, 6, and 5, respectively.  

Based on the link state matrix in Fig. 1(b) one can obtain 
different values for the path bandwidth for different slot 
reservation algorithms: for instance, 1 slot (Fig. 1(c)) or 2 
slots (Fig. 1(d)).  

Besides a greater path bandwidth, the reservation scheme 
in Fig. 1d yields also a more balanced distribution of 
reservable slots among the path nodes. The two reservation 
schemes use different total numbers of slots in a TDMA 
frame: 15 in Fig. 1(c) and 13 in Fig. 1(d).  

A well designed slot reservation algorithm should yield a 
total number of reserved slots as close as possible to the total 
free slots in a frame (24 in the above presented example, 
Fig. 1(b). 

As it was shown that GA techniques could be successfully 
used to obtain efficient near-optimal solutions for complex 
NP-complete optimization problems, including TDMA 
scheduling problems, we propose a heuristic reservation 
algorithm; its performances are evaluated through computer 
simulations. 

The theory of genetic algorithm suggests that heuristic 

optimization problems are extremely sensitive to the 
appropriate design of solution representation, genetic 
operators and parameter settings (probabilities of crossover, 
mutation).  

In this study we propose an improved GA and, through 
simulation experiments, demonstrate that we obtain a larger 
bandwidth, as compared to the results in [5] and [8], in a 
smaller number of generations as compared to [5]. 

 

 
Slot 

1 2 3 4 5 6 7 8 

N
o

d
e 

 

a U F F U F F F U 
b F F F F U F F F 
c F U F F F F F U 
d F F F U F U F F 
e F F F F F F F F 

 f U F U F F F U F 

(a) 

 
Slot No. of free 

slots 1 2 3 4 5 6 7 8 

L
in

k
 

a-b U F F U U F F U 4 

b-c F U F F U F F U 5 
c-d F U F U F U F U 4 
d-e F F F U F U F F 6 
e-f U F U F F F U F 5 

(b) 

 
Slot No. of 

reservable 

slots 
1 2 3 4 5 6 7 8 

L
in

k
 

a-b 2 1 0 2 2 1 0 2 2 

b-c 1 2 1 1 2 0 1 2 4 
c-d 0 2 0 2 1 2 0 2 1 
d-e 1 1 1 2 0 2 1 1 5 
e-f 2 0 2 1 1 1 2 0 3 

(c) 

 
Slot No. of 

reservable 

slots 
1 2 3 4 5 6 7 8 

L
in

k
  

a-b 2 1 1 2 2 0 1 2 3 

b-c 0 2 0 1 2 1 0 2 2 
c-d 1 2 1 2 0 2 1 2 3 
d-e 0 0 0 2 1 2 0 1 2 
e-f 2 1 2 1 0 1 2 0 3 

(d) 
Fig. 1.  Example of slot allocation for a 6 nodes path and an 8 slots TDMA 
frame: a – Sample of a node state matrix for a 6 node path and an 8 slot 
TDMA frame; b – Link state matrix corresponding to the above node state 
matrix; c – Possible slot reservation, path bandwidth = 1 slot; d – Possible 
slot reservation, path bandwidth = 2 slots. 

III. GA FOR TDMA –BASED MANET BANDWIDTH 

MAXIMIZATION  

Genetic algorithms are well-known optimization 
techniques based on the principles of evolution and natural 
genetics, performing search operations in complex, large and 
multimodal domains and providing near-optimal solutions 
for the objective (fitness) function of an optimization 
problem [10]. 

The evolutionary algorithm maintains a population of 
individuals, denoted as chromosomes, representing potential 
solutions of the optimization problem. One has to devise a 
method to give some measure of the adequacy of an 
individual for the given problem, a so called fitness. A new 
population is formed by appropriately selecting the more 
fitted individuals, transforming them by means of genetic 
operators to form new solutions. There are unary 
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transformations, mutations, which create new individuals by 
a small change in a single individual and higher order 
transformations, such as crossover, which create new 
individuals by combining parts from several individuals.  

After generating the offspring, a generation replacement 
strategy must be proposed to keep the population size 
constant. There are two approaches: the individuals in the 
current population are completely replaced by the offspring, 
making the best chromosome of the population fail to 
reproduce offspring in the next generation, or there is an 
elitist group from the current population which “survives” in 
the next generation. If the elitist rate is β, a proportion of 
1−β fittest individuals of the offspring are selected, where β 
(0 < β < 1) is an important parameter affecting the 
convergence property [11]. After several generations the 
algorithm converges and the best individual represents a 
near-optimum solution. Usually the optimization algorithm 
will be terminated if a specified maximum generation 
number is reached or the best individual keeps invariant for 
a sufficiently large number of successive generations.  

In order to set-up the GA optimization framework we 
have to follow the necessary stages, implying to devise [11]: 

1) a genetic representation of solutions to the problem, 
2) an evaluation function to rate the solutions in terms 
of their fitness, 
3) selection methods to decide on the individuals which 
will produce offspring,  
4) genetic operators that alter the genetic composition 
of individuals during reproduction, 
5) replacement methods in order to create a new 
population. 

Further on we have to establish a way to create an initial 
population of solutions, to set the values for the GA 
parameters (population size, selection method, probabilities 
of applying genetic operators) and to take care of infeasible 
solutions. 

In order to address the representation of the solutions to 
the problem of bandwidth maximization in TDMA-based 
MANETs we make the assumption that the total number of 
time slots is constant throughout the transmission process. 

B. Chromosome representation 

Several strategies for adequately representing the 
chromosomes in TDMA broadcast scheduling related GA 
optimization algorithms have been reported. In [12] a binary 
matrix representation based on within-two-hops connectivity 
matrix is presented. Real number representation and 
arithmetic real-coded variation operators tailored for time 
slot and turn optimization on TDMA-scheduled resources 
with evolutionary algorithms are used in [9]. 

The principle of chromosome representation we used in 
this study is inspired from the one described in [5]. Each 
individual is associated to an m1xm2 matrix, Mc, 
corresponding to the slot schedule matrix, where m1 is the 
number of hops and m2 is the number of time slots of each 
link along the path. Each position (i,j) of the matrix is 
obtained from the free slot matrix in accordance with the 
process described in the previous section. The value of each 
gene, which in fact corresponds to a slot, has only one of the 
following values: 0 – if the slot is unreservable, ‘1’ – if the 

slot is reservable or ‘2’ – if the slot is unavailable.  Due to 
the constraints imposed by the TDMA based MANET (half-
duplex and interference), a valid individual is represented by 
a slot schedule matrix containing at most one ‘1’ in any three 
consecutive rows of each column. The path bandwidth is 
defined as the minimum of the number of reserved slots in 
each row.  

The input of the GA is the free slot matrix of a given path. 
From this matrix one generates a set of chromosomes to 
form the initial generation, taking into account the 
previously mentioned restrictions. So, the derivation 
procedure is as follows: scan each element in each row of 
the given matrix, from the first to the last element. If an entry 
is marked with ‘0’ (‘unreservable’), then its value is 
reassigned to ‘2’ (‘unavailable’), otherwise, its value is 
randomly reassigned to ‘1’ or ‘0’. As explained before, for 
the case when an element of the chromosome (matrix) is 
assigned to ‘1’ (‘available’), it has to be checked that at most 
one of the two upstream consecutive entries is ‘1’.  
Otherwise, the assigned value is not valid and it has to be 
changed to ‘0’. 

C. Fitness function 

Evaluation plays a very important role in the GA process. 
Fitness function, effectively, maps all the properties of an 
individual to a number - giving it a rank and a place among 
the other individuals in the pool [10]. In our study, the 
fitness function, similar to that in [5], computes a value 
connected to the bandwidth of the path. Denoting by    the 
number of the elements of the chromosome matrix Mc with 

value ‘1’ in each row and by 1..1,}ˆmin{ˆ miircM == , the 

fitness function is defined as 
 

 ˆ ˆ ˆ( ) ( 1) ( 1).c c cf M M x M= + +    (1) 

Obviously, a higher fitness value for a given individual 
implies a larger bandwidth corresponding to the evaluated 
path. 

D. Selection and reproduction 

It is well known that in order to generate good offspring, a 
good parent selection mechanism is necessary. For each 
generation, a proportion of the existing population is 
selected to breed a new generation. Individual solutions are 
selected through different processes, where fitter solutions 
(as measured by a fitness function) are typically more likely 
to be selected. There are several well-known selection 
procedures [10], [12]: Roulette wheel selection (RWS), 
Tournament selection (TS), Stochastic universal sampling 
(SUS).  

For the proposed optimization problem, both RWS and 
TS proved to be adequate. In order to decrease the number 
of generations necessary for algorithm convergence we have 
adapted, tested and proved to be effective for this 
application the Emperor-selective method, EMS [13]. This 
mating scheme sorts the individuals in a descending order of 
fitness. The best individual (emperor) mates with the second 
best and then, starting from the third fittest, from every pair 
of adjacent fitted individuals one is selected randomly and is 
mated with the emperor. The method allows the fittest 

ir̂
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individual to mate preferentially with practically the rest of 
the population. As it was reported that EMS mating scheme 
could converge prematurely, we have investigated different 
methodologies to circumvent this drawback. So, first, we 
have modified the classical EMS, selecting the emperor 
mating partners by Tournament selection, but a better 
solution proved to be that of mixing classical evolution of 
the GA, using TS, with EMS, after a predetermined number 
of generations, defined as percentage of the maximum 
number of generations. In this way we have obtained 
solutions very closed to the optimal ones, but in a 
significantly smaller number of generations. 

In order to produce a new generation, a pair of "parent" 
solutions selected for breeding, produce "child" solutions 
using genetic operators (crossover and mutation), the new 
solutions typically sharing many of the characteristics of its 
"parents". 

As mentioned in [11] the existence of feasible and 
unfeasible individuals in a population can influence the GA 
in different stages such as: the processing/evaluation of 
unfeasible chromosomes or the elitist selection. There are 
several ways to approach the problem of unfeasible 
individuals, which is far from trivial. The “death penalty” 
heuristic, popular in many evolutionary algorithms, implies 
the rejection of unfeasible individuals, simplifying in this 
way the algorithm. Another method is to devise a technique 
to “repair” the unfeasible individuals, transforming them in 
feasible ones. Finally, maybe the most complex approach is 
the design of the evaluation function for unfeasible 
individuals – including an appropriate penalty. In this paper 
we present the results obtained using the second method: 
replacement of the unfeasible individuals (slot schedule 
matrices) by the corresponding “repaired” ones. 

The crossover operator consists of two operations [5]: 
column exchange and row exchange, according to the 
crossover probability. The columns and rows to be 
exchanged are randomly selected. The operation of row 
exchange can generate unfeasible solution, that is, matrices 
in which there is more than one ‘1’ within any three 
consecutive values of the same column. In this case, the 
error is fixed by changing to ‘0’ the value of the elements in 
the nonselected rows. 

A similar problem occurs when designing the mutation 
operator. The random changing of an element of the 
chromosome matrix, according to the mutation probability, 
should provide a valid individual. So, after performing each 
mutation, all the two upstream and downstream elements of 
the same column should be checked. If the imposed 
restriction of having at most one ‘1’ in three consecutive 
elements of the same column is not fulfilled, the appropriate 
element in a nonselected row is set to ‘0’. 

The newly obtained individuals are selected to form the 
next generation [10]. In addition, elite-preservation strategy 
is employed, in which the best individuals are kept during 
the generations, in different proportions. For each iteration, 
these processes produce a next generation of chromosomes. 
It is proved that, generally, the average fitness of the 
population increases by this procedure, since only the best 
individuals from the previous generation are selected for 
breeding, along with a small proportion of less fit solutions. 

The simulation studies we have carried out showed that 
the chromosome matrix representation we have chosen 
combined with the TS outperforms the results reported in [5] 
and [8]. The mixing between classical GA and the EMS 
mating scheme provides near optimal solutions in 
significantly smaller number of generations. 

IV. SIMULATIONS AND RESULTS 

For the implementation of the proposed algorithm we 
have used GaLib, A C++ Library of Genetic Algorithm 
Components [14], implemented in Visual Studio 2010. The 
GaLib is a powerful open source C++ library, containing a 
robust set of classes for genomes and genetic algorithms. It 
also provides facilities for setting the algorithm parameters.  

The library uses mainly two classes: a genome and a 
genetic algorithm. Every genome instance represents a single 
solution to the given problem. The genetic algorithm defines 
the way in which the evolution will take place. It uses an 
objective function to determine how “fit” every genome is 
for survival. Genome operators (implemented as methods of 
the Genome class) and selection strategies (implemented as 
methods of the Genetic Algorithm class) are used to generate 
new individuals. 

For the bandwidth calculation problem, two classes were 
derived: one for the genome and the other one for the 
genetic algorithm. The genome class was derived from the 
GA2DArrayAlleleGenome class which uses a bidimensional 
array to represent the genome, each gene having a 
predefined allele set. For the TDMA genome, the allele set 
comprises only 3 values: {0, 1, 2} which represent the three 
described states of a time slot. Specific genetic operators 
were defined for the TDMA genome as static methods which 
ensure that the resulted genome is a valid one that can be 
further used as a slot schedule matrix. 

The second derived class implements the genetic 
algorithm. Within this class, a step function was defined that 
applies the genetic operators to the current population and 
obtains the next population of individuals. Implementation 
of this function is specific for each of the tested mating 
strategies. Additionally, an objective function was defined to 
evaluate each genome according to the proposed fitness 
function formula (1). 

The simulation experiments aimed to study the 
performances of the proposed algorithm with various GaLib 
operator parameters. As argued in the previous section, the 
solution as well as the convergence properties of a GA 
strongly depends on the adequate choosing of algorithm 
parameters. The settings of these parameters are generally ad 
hoc. The success of genetic search also depends on the 
optimum balancing between the population diversity 
defining the search space and the selection pressure to get 
the optimum point fast [15]. 

As presented in the previous section, the input of the 
algorithm is a randomly generated common free slot matrix, 
adequately converted into a slot schedule matrix by means of 
the restrictions for slot allocation.  

Although in [11] it is also mentioned that “for some 
problems, the process of repairing unfeasible individuals 
might be as complex as solving the original problem”, for 
our application, “repairing” a slot schedule matrix was not 
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problematical, implying checking some matrix entries and, 
possibly, resetting them to ‘0’.  

More precisely, for the crossover operation, performing 
the column and row exchange will generate two offspring. 
Each of them is then tested for validity as follows: all the 
elements on every column are analyzed one by one and each 
time a '1' is found, the two upstream consecutive entries are 
checked. In case any of them is also equal to ‘1’, then the 
entry placed in a nonselected row is changed to '0' (see also 
Section II.A). 

Similarly, for the mutation operation, each time an 
individual's gene suffers mutation, the two upstream and the 
two downstream consecutive entries of the mutated entry 
have to be checked. If any of them is found '1', it is replaced 
by '0'.   

For the beginning, in the attempt to obtain larger values 
for the path bandwidth, we have tested different selection 
methods for the GA. By means of simulation studies, we 
have established the values of the first three parameters for 
which best solutions were obtained for the entire set of 
experiments (number of nodes and number of time slots), 
crossover probability = 0.1, mutation probability =0.05 and 
population size = 400.  The best method proved to be 
Tournament Selection. 

Table I presents the results we have obtained for 25 time 
slots and variable number of hops (5, 10, 25) in 300 
generations for comparison with the method presented in [5]. 
The algorithm was tested for path lengths ranging from 5 to 
15 (increased in steps of 5), and time slots in the range 5 to 
25 increased in steps of 5). 

In order to fairly compare the proposed algorithm to those 
in [5] and [8], for each set of parameters the simulation 
experiment was repeated 50 times and the output of the 
algorithm was recorded and then averaged. The obtained 
results are presented in Fig. 2, Fig. 3 and Fig. 4. 

TABLE I. AVERAGE PATH BANDWIDTH FOR 25 TIME SLOTS 
USING PROPOSED IMPLEMENTATION WITH  

RWS AND TS, PC = 0.1, PM = 0.05, PS = 400, NG = 300. 
Hops RWS TS 

5 6.3 6.44 
10 5.18 5.46 
15 4.88 5 

 

From Fig. 2, Fig. 3 and Fig. 4 one can note that the 
proposed algorithm provides a larger bandwidth when 
compared to the method proposed in [5] and to the forward 
algorithm [8]. This is due to the chromosome 
implementation, based on GaLib GA2DArrayAlleleGenome 
class, adequate choosing of the selection algorithm (TS) and 
GA parameters. 

As the results obtained for the average path bandwidth 
outperform those reported in the existing reference 
approaches ([5] and [8]), we have limited our research for 
the moment only to the solution of “repairing” unfeasible 
individuals. We intend to study the possibility of designing 
an evaluation function for unfeasible chromosomes able to 
penalize them adequately, but expect that running evaluation 
functions with penalty for unfeasible individuals will imply 
longer execution times for the GA. 

Next step was devoted to finding the possibility of 

decreasing the number of generations for which the near-
optimal solution is obtained. 

Our simulation studies revealed that the GA behaves 
better for smaller crossover probabilities. This suggests that 
in order to obtain faster convergence, fitted individuals have 
to be maintained in larger proportions in the new 
generations. The tailoring of the elitist rate β proved to be 
not enough for the proposed objective.  That is why we have 
modified the classical EMS. For our experiment, after 
sorting the individuals in a descending order of fitness and 
mating the best individual (emperor) with the second best 
one, the rest of the mating pairs of the emperor were selected 
by TS or RWS, with setting crossover probability 1. Using 
this approach, the algorithm could be stopped earlier, 
providing near optimal solutions.  

Fig. 2.  Average path bandwidth for path length = 5 hops. 

Fig. 3.  Average path bandwidth for path length = 10 hops. 

Fig. 4.  Average path bandwidth for path length = 15 hops. 

In order to circumvent the premature convergence of the 
EMS, a better approach was to combine the classical 
evolution of the GA for a specified number of generations 
(using TS or RWS) with the EMS for the remaining 
generations. We will denote these algorithms as EMS+TS 
and EMS+RWS respectively.  In Table II we show the 
results obtained for the same experiment presented in Table 
I for a number of 100 generations, using for 30 generations 
TS or RWS (PC = 0.1, PM = 0.05) and EMS for the next 70 
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generations (β = 0.05), PS = 400 and NG = 100. 
Due to its specific operation mode (that is, by keeping one 

of the parents fixed and equal to the best individual in the 
current population throughout each reproduction iteration), 
the selection algorithm for the case of EMS converges faster 
and so, the whole algorithm runs faster. 

TABLE II. AVERAGE PATH BANDWIDTH FOR 25 TIME SLOTS 
USING PROPOSED IMPLEMENTATION FOR EMS+TS AND EMS 

+RWS, PC = 0.1, PM =0.05, PS = 400, NG =100. 
 Hops EMS+TS EMS + RWS 

5 6.38 6.31 
10 5.34 5.27 
15 4.9 4.89 

 
Comparing the results from Table II to those in Table I, 

one can see that reducing drastically the number of 
generations, form 300 to 100, the near optimal solution is 
still very close to the optimal one obtained using the 
proposed implementation with TS. More precisely, the 
average path bandwidths for the three analyzed cases differ 
from the obtained optimum with less than 2.2% . 

The possibility of obtaining near optimal solutions in 
fewer generations could be exploited in real-time 
implementations of the proposed algorithm. 

V. CONCLUSIONS 

We have improved the GA framework for the problem of 
finding the maximum bandwidth of a path for MANETs. 
The algorithm was implemented using an open source GA 
Library, GaLib [14].  

The obtained results were compared with two existing GA 
approaches ([5] and [8]) proving that the proposed algorithm 
outperforms the existing approaches. We have also proposed 
a new combined GA algorithm, using EMS and providing 
near optimal solutions in a significantly smaller number of 
generations as compared to those currently reported.  

As the hardware performances of the processing units are 
continuously increasing and there have been reported even 
hardware implementations of GA, we consider that 
investigating the possibility of using heuristic algorithms in 
real-time applications for bandwidth maximization in 
TDMA-based mobile ad hoc networks is worthwhile. 
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