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1Abstract—The present paper presents some of the specific
aspects of the development of a smartphone-based physiological
parameters monitoring system intended for occupational safety
applications. The system consists of a comfortable garment with
integrated wireless sensors and a personal smartphone
connected to the sensors via Bluetooth. A smartphone is used
for data gathering and processing, heart and respiratory rate
evaluation and information transmission. A reliability of the
physiological parameter values obtained by the system highly
depends on the signal processing and evaluation methods
applied. The methods must ensure robustness for human
motion artefacts in the signal and other noise prevailing in
industrial environment. The monitoring system presented here
combines relatively simple data gathering tools with certain
novel digital signal processing algorithms that are useful in
solving reliability problems caused by human motion artefacts
and electromagnetic interference. The proposed method for the
evaluation of respiratory and heart rate and the developed
algorithms are based on the detection of distinctive peaks in
respiratory and electrocardiogram signals using digital filtering
and a moving difference window with an adaptive length. A
median threshold criterion is applied to reject the false peaks in
those signals caused by noise. The sensors and data processing
algorithms were tested experimentally and the results were
verified with a portable medical patient monitor MEC-1000.
The differences between the values of corresponding
parameters were insignificant, which means that the indications
of the wearable monitoring system could be trustworthy and
practically applicable.
2

Index Terms—ECG; inductive plethysmography;
monitoring system; signal processing; smartphone.

I. INTRODUCTION

The interest in the monitoring systems of the personal
wearable vital signals has been growing in the last few years.
A recent advance in integration of sensors and mobile
technologies stimulates the development of more advanced
monitoring systems and extends their functionality, thus,
making them more attractive and affordable for people. A lot
of publications present different implementations of
wearable monitoring systems designed specifically for a
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real-time proactive rehabilitation surveillance, sportsmen
training, physiological data monitoring of firefighters and
workers of some other hazardous occupations, and other E-
Health applications [1]–[6]. A few outstanding projects,
such as Wealthy [7], LifeShirt [8], Life-Guard, MyHeart,
SmartLife, and others [9], [10] have been developed, and
some of them have been proposed as commercial products
already. However, most of these systems are still in the
under-development stage. In our opinion, the key elements
for a successful commercialization of those projects could be
reducing the price of the overall system and making it more
convenient and acceptable for the user.

In this paper, we focus on the physiological parameters
monitoring system of the workers doing certain hazardous
activities, such as dispatchers at chemical plants, electricians
at electric power enterprises or building site operators. The
availability of the mentioned devices on the market is
limited. One of the monitoring aspects in terms of
occupational safety is the fact that the person being
monitored is healthy initially and any restriction and
interference with any diagnostic medical equipment is
unacceptable. What is more, the condition of health of the
monitored person might rapidly change at any time, and the
monitoring system must detect these changes instantly.
These factors define certain guidelines and the developers of
the wearable monitoring systems must follow the following
directions: designing lightweight, comfortable and low
power sensors, implementing low power wireless data
transmission and gathering units, and developing fast and
reliable computation-efficient signal processing methods.
Signal processing techniques should be suitable for battery
powered data processing devices, including smartphones,
which recently have been gaining more and more popularity
with various mobile solutions [11]–[13].

Signal processing methods proposed in this work enable a
reliable real-time evaluation of primary physiological
parameters during rest periods, as well as during activities
requiring intense body motions. All body sensors and
transmitters are smoothly integrated into the worker’s
garment and create no obstacles during their daily activities.
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Use of a smartphone as the data gathering, processing and
transmitting device significantly reduces the cost of the
system and significantly contributes to its simplification. The
monitoring system described here is supposed to serve as a
prototype for a potential commercial product.

The rest of the paper is organized as follows: Section II
describes the developed system in general, Section III
describes the implementation of respiratory inductance
plethysmography and electrocardiogram (ECG) sensors in
more detail, Section IV presents signal processing and
parameters evaluation methods which were suggested in this
work and implemented in the system, Section V is assigned
to experimental verification. Conclusions are presented in
Section VI.

II. DESCRIPTION OF THE SYSTEM

In order to enable an effective long-term vital signs
monitoring and detection of high-risk situations, sensors
should continuously track the most distinguishing primary
physiological parameters. The set of parameters depends on
the area of the system application, as well as the complexity
of the equipment implemented into the system. According to
the medical practice, physiological parameters that specify
the work of both respiratory and heart systems are crucial for
the instant evaluation of the patient health status. At the
present stage of our investigation, we confined ourselves to
the monitoring of respiratory function and ECG and focused
on the health state evaluation algorithms based on
respiratory rate (RR) and heart rate (HR) estimation.
However, other physiological parameters (body temperature,
blood pressure) could also be used in the monitoring system
as complementary sources of information.

Figure 1 presents a schematic diagram of the wireless
monitoring system proposed in this work. The whole system
consists of the worker’s wearable equipment, a smartphone,
and remote units: the co-worker’s or principal staff’s cell-
phones and a server at the medical observation centre.

Remote
Monitoring Units

GPS

GPRS

RIP
Sensor

DTU

ECG
Sensors

Fig. 1. A wireless physiological parameters monitoring system.

The wearable equipment includes the respiratory sensor

and ECG sensor units, while each of them combines passive
sensors integrated into the T-shirt and a hardware for analog
signals conditioning. All signal processing and transmission
circuits are placed into a separate data transmission unit
(DTU), which is attached to the same T-shirt through special
clip-contacts. DTU performs three main functions: analog
signal conditioning, conversion into digital and raw data
transmission via Bluetooth to the smartphone. In order to
increase a lifetime of the built-in rechargeable battery, all
advanced data processing functions are shifted from DTU to
the phone. A smartphone performs all procedures of digital
signal processing: filtering of the respiratory and ECG
signals, detection of distinctive points in these signals,
estimation of the HR and the RR from these signals, and
formation of the alarm signal, when the values of HR or RR
exceed the predefined ranges.

The smartphone is also used for a Bluetooth transmission
control, data visualization (a real-time visual feedback of
physiological parameters), and alarm signal transmission
through the General Packet Radio Service (GPRS). The
inner services of the smartphone Global Positioning System
(GPS) are used for expanding functional abilities of the
system. Currently, the monitoring system uses GPS
information for the detection of the worker’s location when
the alarm signal goes off. The price of overall monitoring
system with a smartphone could be reduced since almost
every ordinary smartphone could be incorporated into the
system without any additional expenses.

The arrangement of the remote units of the monitoring
system depends mainly on the area of application. The
arrangement proposed hereto involves two additional
smartphones and a remote computer. The system works as
follows: after the alarm signal is transmitted, the co-worker
receives this signal with the identification, location and the
cause of the alarm to their own smartphone. The same
information is also sent to the principal staff of the worker.
A more comprehensive information is transmitted to the
server of the medical centre. Along with the alarm signal and
data about the user, the server receives data on HR and RR
values and processed signals of the ECG and Respiratory
Inductive Plethysmography (RIP). All data and signals
received by the server are stored in its memory.

III. SENSORS OF THE MONITORING SYSTEM

A. RIP Sensor Unit
In order to ensure the mobility and comfort of the person

under observation, a fairly non-invasive respiratory rate
monitoring technique has been proposed in this article. It
involves an RIP method, which is one of the non-invasive
methods used to measure a respiratory rate and other
respiratory function parameters for medical treatment
purposes and has been approved by major healthcare
institutions.

RIP uses an inductive sensor made of insulated wires
woven or sewn in a sine wave pattern on an expandable belt.
A wavy formation of the wires allows an easy expansion of
the belt. Usually, the method involves two belts placed
around the rib cage and the abdomen. During respiration, the
length of the belts varies and, also, the self-inductance of the
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coils changes proportionally. By measuring the variation in
the self-inductance of the coil, the variation of the
circumference of the rib cage and abdomen can be detected.
This circumference is proportional to the tidal breath. After
obtaining these data, the system calculates the respiratory
rate.

The method has its own limitations, which are discussed
in literature. One of the most challenging problems is the
sensitivity to body movements and posture changes [14]. In
fact, various approaches to the technical realization of the
inductive sensors presented in different works still cannot
provide the answer to the question of how the parameters
wire pattern woven or sewn along the belt affect the
characteristics of the RIP sensor. In addition, the equipment
requires calibration by a spirometer and balancing of the
abdominal and chest wall signals, respectively.

This paper provides certain experiments that were used to
find the parameters and the effectiveness of the differently
shaped respiratory sensors that mainly affect the reliability
of the acquired data. The experiments included the
dependency evaluation of the inductive coil sensitivity on its
geometrical parameters: height, density and shape of the
wire waves. Also, the experiments with several parallel coils
connected in series were made in attempt to achieve a higher
sensitivity of the sensor.

Based on the experimental results, the respiratory belt was
designed and manufactured. It is composed of three parallel
wires interwoven into one textile belt during manufacturing
process (Fig. 2). The belt itself is attached to the textile T-
shirt and surrounds the lower part of the rib cage. The
special low wave formation of the wire (approx. height of
the wave – 5 mm) allows a low resistance stretch along the
belt and at the same time it is robust to the cross folds up of
the wire.

Fig. 2. Fragment of inductive sensor with 3 parallel coils interwoven into
expandable belt sewn into T-shirt.

The respiratory signal processing circuit proposed in this
article contains a variable frequency oscillator with an
inductive sensor in the oscillatory circuit, respiratory signal
demodulator, band-pass filter, and amplifier (Fig. 3).

Inductive
Sensor

LC
Oscillator

RIP Signal
Demodulator

Filter Amplifier
To ADC

Fig. 3. Structure of respiratory signal processing unit.

Frequency of the signal generated by the oscillator varies
according to the inductance changes produced by the
inductive sensor. The nominal frequency is set to 300 kHz.

A demodulator and filter together present frequency to a
voltage converter. The demodulator transforms the oscillator
signal into a pulse signal with a constant pulse width and

frequency the same as generated by the oscillator. A band-
pass filter cuts off noise beyond the frequency range from
0.02 Hz to 80 Hz. Signal amplifier is used to adjust the
output signal to match the input of the microcontroller. The
microcontroller used for primary signal processing and
transmitting is Texas Instrument’s MSP430F168. 12-bit
resolution ADC module integrated within MSP430F168 is
used for the RIP signal sampling. Sampling rate for RIP
sensor signal is set to 100 Hz.

B. ECG Sensor Unit
The ECG sensor unit uses ECG electrodes and signal

conditioning circuit for obtaining an amplified and
preprocessed electrocardiogram signal. The output signal of
the unit is used to calculate the heart rate.

A textile T-shirt is used as a basis of wearable sensors, in
which the flexible ECG electrodes are pre-integrated by a
manufacturer. One flexible electrode takes an area of about
65 mm × 20 mm and is connected to the signal processing
unit through a metal snap. The electrodes on the shirt are
arranged in the way that the first (I) standard lead of the
ECG is measured.

The active part of the heart rate sensor unit was developed
and implemented by the authors. The structure of this analog
preprocessing module of the ECG signal is shown in Fig. 4.

ECG
Electrodes

First Stage
Amplifier Adder Second

Stage
Amplifier

Anti-
aliasing

filter

CMS
Electrode

CMS
Amplifier Integrator

InverterInverter
To ADC

Fig. 4. Structure of ECG signal processing unit.

The ECG signal is amplified 500 times by two
amplification stages. The first stage amplifies the signal
about 5 times. The amplifying gain is chosen low because
the amplified signal in this stage can contain high value of
the offset voltage caused by the electrode polarization,
movement or other phenomena. This voltage can saturate the
amplifier. The inverter, integrator and the adder closed in
negative feedback loop are used for the continuous
compensation of this voltage. Correctional voltage (an
integrated negative value) passes from the integrator to the
adder and that way reduces the offset error of the signal fed
to the second amplification stage. This solution enables the
amplification of the signal in the second amplifying stage
with higher gain without saturating the amplifier.

The so-called right-leg scheme is used for the common
mode noise reduction in the ECG sensor unit. The common
mode voltage (DC electrode offset potential and 50 Hz AC-
induced interference) of the first amplification stage is
amplified by the common mode signal (CMS) amplifier
inverted by the inverter and fed back to the human body. In
this case, the negative feedback reduces the common mode
voltage to a low value.

The processed and amplified analog ECG signal is passed
to the analog-to-digital converter (ADC) in a
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microcontroller. ADC module of MSP430F168 is used for
the ECG signal sampling. The sampling rate for ECG signal
is set to 200 Hz. In order to avoid the aliasing noise caused
by the conversion, an anti-aliasing filter is used.

IV. METHOD OF PARAMETERS’ EVALUATION AND SIGNAL
PROCESSING ALGORITHMS

A. Features of RIP and ECG Signals
Digital signals from the microcontroller are wirelessly

transmitted to the smartphone for further processing. Despite
the analog filtering, digital signals still possess a significant
amount of different kind of noise.

A series of experiments were made to find how different
factors of the environment and human activities influence the
noise in the signals. The most influential noise is caused by
the body movement: walking, torso rotation, leaning, etc.
Digital RIP signals during rest and during motion are
presented in Fig. 5. When a man breathes still (no
movement), the RIP signal only has a low amplitude high
frequency noise (Fig. 5(a)). The average amplitude of the
noise reaches 1/10 – 1/20 of the signal’s amplitude. On the
other hand, walking adds a significant noise to the signal
(Fig. 5(b)). The average amplitude of the noise during
walking might be twice as signal’s amplitude.

(a)

(b)
Fig. 5. RIP signal during rest (a) and walking (b). Time scale is 2 s/div.

The highest ECG signal noise is observed during the torso
motions. In this case, the average amplitude of the noise
exceeds the ECG signal up to 6 times. The noise is mainly
induced by the change of electrode-body contact resistance,
body tissue impedance, and electrode shape. Examples of
the digital ECG signals gathered during the rest periods and
during torso rotation are illustrated in Fig. 6.

Analog signal processing ensures a 50 Hz and high
frequency noise suppression, which is not significant in the
obtained ECG digital signal even when a person is near
230 V power network lines and near Wi-Fi routers
(Fig. 6(a)). Even a 2.4 GHz transceiver applied in the system

for wireless data transmission does not cause visible high
frequency noise in the digital ECG signal.

(a)

(b)
Fig. 6. ECG signal during rest (a) and torso rotation (b).Time scale is
1 s/div.

B. RIP Sensor Signal Processing and Respiratory Rate
Evaluation

There is a considerable high frequency noise present in
the sampled sensor signal of the inductance
plethysmography respiration. The noise could introduce
errors in respiratory rate evaluation. Digital low-pass infinite
impulse response (IIR) filter is implemented to suppress the
high frequency noise. Butterworth sixth order filter with a
cutoff frequency fc = 5 Hz is applied. Implementation of the
filter is

0 1
,

K L
k k

k= k=
β(i)= a  (i k) b β(i k)     (1)

where β is filter output values, α refers to values of the
original digital RIP signal, ak and bk are low-pass filter
coefficients, K and L are numbers of the filter coefficients ak

and bk respectively, i stands for the index of the recent value.
The original digital respiratory signal during rest and

signal after the processing stage is shown in Fig. 7.
The scale of the amplitude here is magnified four times in

comparison with Fig. 5(a) and lower respiratory amplitude
(shallow breathing) is presented to reveal the influence of
the high frequency noise to the respiratory signal. The filter
suppresses this noise up to 15 times.

Motions not directly related to the torso motions, such as
walking, induce a noise of a slightly higher frequency than
respiratory signal. In order to reduce the noise, moving
average filter is applied in the next processing step. The
implementation of the filter is as follows

 
0

1 ,
1

N

k=
(i)= β i k

N
 


 (2)
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where ξ is output value of the filter, N refers to the number
of points in the average. The implementation of this kind of
filter does not require a lot of calculations [15]. Figure 8
illustrates how this moving average filter affects the
respiratory signal obtained during walking. The noise is
reduced about 20 times–25 times after this filter.

Fig. 7. Original RIP signal during rest (upper curve) and the same signal
after low-pass IIR filter (lower curve). Time scale is 2 s/div.

Fig. 8. RIP signal filtered by low-pass IIR filter during walking (upper
curve) and the same signal further filtered by moving average filter (lower
curve). Time scale is 2 s/div.

Human body leaning, torso rotation and other body
motions cause significant RIP signal deviations from a zero
value resulting in a high amplitude low frequency noise. In
this case a respiratory signal might not cross a zero line in a
different inhalation/exhalation phases, and a traditional logic
of the zero crossing point detection would be ineffective.
Therefore, the method based on positive and negative peak
detection by applying an adaptive, relatively wide moving
difference window and signal peak amplitude evaluation was
developed and implemented in the system to ensure a
reliable respiratory events (inspiration or expiration)
identification.

The positive peak of respiratory signal within a moving
window is detected if the following condition is met:

( 1) 0,
( ) 0,
i
i







  
 

(3)

where Δξ+ is a result of difference of the first and the last
values of the moving positive peak detection window:

     1 1 1 ,i i i l          (4)

      ,i i i l       (5)

where l+ stands for the length of the moving difference
window for the detection of the positive peak.

Value of the recent positive peak ξP+(h+) is found

 P round ,
2
lh  i  

 
     

  
(6)

where “round” is rounding to an integer value operation, h+

refers to the index of current positive peak value.
Negative peak is detected if the following condition is

met:

( 1) 0,
( ) 0,
i
i







  
 

(7)

where Δξ- is the result of the difference of the first and the
last values of the moving negative peak detection window:

     111   liii  , (8)
       liii  , (9)

and l– stands for the length of the moving difference window
for the detection of the negative peak.

Value of the recent negative peak ξP–(h–) is found as
follows

 P round ,
2
lh  i  

 
     

  
(10)

where h– is index of the current negative peak value.
Lengths of the moving difference windows of the positive

and negative peak detection l+ and l– are adaptive: they are
inversely proportional to the respiratory rate. Relatively
wide moving difference windows are applied for better
reliability. The order of the window length is similar to the
signal wave length of a single inspiration (or expiration).
The length of the difference window applied for the
inspiration peak detection is chosen smaller in comparison to
the difference window length l+< l– of the expiration peak
detection because of the sharper corresponding signal wave
form.

In order to decide whether the recent waves are caused by
respiration or noise, the additional condition is checked

     P P P TH ,r h h         (11)

where ξP(r) is r-th peak-to-peak amplitude of the recent
wave’s amplitude, ξTH – a threshold.

Waves are considered to be the inspiration/expiration
waves if the condition (11) is true. Value ξTH is the adaptive
threshold estimated as a median value of the last detected
respiration induced peak values

     
TH R

P P P RPmedian 1 , 2 , , ,

C

r r r N



  

 

      (12)
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where CR is respiration threshold coefficient, NRP – a number
of the last detected peaks and “median” is the median value
detecting procedure. Experimentally chosen values of CR =
0.36 and NRP = 5 are applied in the system. Threshold value
and array of the last five peak-to-peak amplitude values of
the respiration wave are updated each time the inspiration
peak is detected.

Respiratory rate is recalculated and refreshed after each
inhalation induced peak is detected. The current respiratory
rate value in breaths per minute is estimated as follows

IP-IP

60 ,RR
T
 (13)

where TIP-IP is a time period between the last two detected
inspiration induced signal peaks expressed in seconds.

C. Electrocardiogram Signal Processing and Heart Rate
Evaluation

The heart rate evaluation is based on QRS complex
extraction and QRS complex peak detection. The QRS
complex detection algorithm was developed. This algorithm
includes signal processing operations, positive peak
detection and peak amplitude assessment. The signal
processing part of the algorithm is similar as in the Pan-
Tompkins algorithm [16] with some modifications. The
modifications involve the implementation of the band-pass
filter of the eighth order infinite impulse response (IIR). The
cut-off frequencies of the filter are fc1 = 14 Hz and fc2 =
20 Hz. The implementation of the filter is presented in (1).
The filter ensures a better noise suppression and replaces the
original Pan-Tompkins two-pole filter and the derivative that
are designed for the implementation on the fixed point
processors. The original ECG signal and the signal after
filtering is shown in Fig. 9.

The filtered signal is being squared to get a better
emphasis on QRS complexes and to avoid negative values.
The signal after squaring operation is shown in Fig. 10.

The QRS complex is determined by detecting the peak in
the processed signal. There are a few peaks related to every
QRS complex in the signal. These peaks are smoothened by
the moving average filter

 ,
1

1

0
MA  



N

k=
kiy

L
(i)=y (14)

where yMA is the filter output value, L refers to the number of
points in the average.

Examples of the original ECG signal and signal after this
processing step are provided in Fig. 11.

The algorithm based on the positive peak detection by
applying a relatively wide moving difference window and
signal peak amplitude evaluation using the adaptive
threshold was developed to estimate the heart rate.

The moving difference window is applied for the
maximum peak detection. A signal maximum peak is
detected when the following condition is met:

 
 

MA

MA

Δ 1 0,

Δ 0,

y i

y i

 



(15)

where ΔyMA stands for the difference between the side values
of the processed signal moving window:

MA MA MA( 1)= ( 1) ( 1),y i y i y i l      (16)

MA MA MA( )= ( ) ( ),y i y i y i l   (17)

and l is the length of the moving difference window
expressed by a number of samples.

(a)

(b)
Fig. 9. Original ECG signal (upper curve) and ECG signal processed by
band-pass filter (lower curve): (a) during rest and (b) motion. Time scale is
0.5 s/div.

(a)
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(b)
Fig. 10. Original ECG signal (upper curve) and filtered ECG signal after
squaring (lower curve): (a) during rest and (b) motion. Time scale is 0.5
s/div.

(a)

(b)
Fig. 11. Original ECG signal (upper curve) and filtered ECG signal after
squaring and filtering by moving average filter (lower curve): (a) during
rest and (b) motion. Time scale is 0.5 s/div.

Further, the amplitude of the detected maximum is
compared to an adaptive threshold yTH to determine, whether
the peak is a QRS peak or a noise peak. If the condition

MA THround ,
2
ly i -  y     
  

(18)

is met, the detected peak is considered a QRS peak.
Value of the last detected QRS peak is as follows

 QRS MA round ,
2
ly m y i -     
  

(19)

where m is index of recent detected QRS peak.
The adaptive threshold is estimated as a median value of

the last detected QRS peak values

TH QRS QRS

QRS QRS QRS

median[ ( 1),...

..., ( 2), ( )],

y C y m

y m y m N

  

  (20)

where NQRS is the number of the last detected QRS peaks
applied for the threshold evaluation (the value of NQRS = 5
was chosen experimentally), CQRS is QRS threshold
coefficient (the value of CQRS = 0.32 was applied).

The threshold value and array of the last five QRS values
are updated each time a QRS peak is detected. Heart rate is
recalculated and refreshed after each QRS complex is
detected. A current heart rate value in beats per minute is
estimated by the following formula

QRS-QRS

60 ,HR
T
 (21)

where TQRS-QRS is a time period between the last two detected
QRS peaks expressed in seconds.

The proposed algorithm misses meanly 3 QRS peaks out
of 200 in the signals taken during motion.

V. EXPERIMENTAL TESTING

The accuracy of the wearable equipment and data
processing algorithms has been experimentally tested by
comparing its readings against the measurements of the
portable medical Mindray patient monitor MEC-1000, which
was used here as a reference device. Respiratory rate
measurement with MEC-1000 is based on the impedance
plethysmography method. Accuracy of the monitor is 1 %
for heart rate measurements and 2 % for respiratory rate
measurements.

Five participants took part in this experiment. All of them
were males, between 29 and 57 years old. Sensors of both
monitoring systems were placed on the same individual at
the same time and readings from both systems were
registered simultaneously. The I standard lead was used for
the measurements of heart rate with the monitor MEC-1000.
30 successive readings of each parameter were taken from
each of the participants. Readings were taken in random
order with the breaks of twenty seconds at least between
each measurement to ensure that the previous measurements
do not influence the present ones. A total of 150 readings
were acquired for respiratory rate and the same number of
readings for heart rate with both systems.

After collecting all experimental data, differences of
measurement results between both systems were analysed.
The average difference between heart rate values was 0.26
beat per minute (bpm), and the standard deviation was 1.77
bpm. Compared to the variation of measured parameter
values (61 ... 93 bpm), these differences and deviation are
quite irrelevant.

The average of respiratory rate differences was 0.24
respirations per minute (rpm) and the standard deviation was
3.83 rpm, when the respiratory rate varied within 9 rpm–21
rpm range.
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By verifying, whether the developed system does not have
any methodological error, it was relied on the assumption
that if the errors are random the data should be distributed
by the normal distribution law. The Kolmogorov-Smirnov
test was performed to define this assumption, using the level
of significance α = 0.05 (standard case). After the
verification by this test, it was found that data are distributed
by the normal distribution law for both heart rate and
respiratory rate parameters.

A statistical analysis was performed for the quantitative
evaluation of previously obtained results. A paired samples
T-test was used to find out whether the differences between
measurements of both systems are statistically insignificant.
The standard level of significance was used in this testing (α
= 0.05). The results of the test showed that the differences of
heart rate parameter values measured by the developed
monitoring system and compared to the ones measured by
the metrologically certified monitor MEC-1000 are not
statistically significant (p-value is 0.358). The same outcome
was reached with the values of respiratory rate parameter (in
this case, p-value is 0.66). Actually this means that the
difference of accuracy of both monitoring system are
statistically insignificant, which also let as assume that
indications of wearable monitoring system could be
trustworthy and practically applicable.

VI. CONCLUSIONS

The respiratory rate evaluation method is based on the
detection of positive and negative peaks in the digital RIP
signal. The proposed algorithm involves a digital low-pass
sixth order Butterworth filter with 5 Hz cutoff frequency
which suppresses the high frequency noise about 15 times
and a moving average filter which reduces the noise of
walking and other body movements 20–25 times. For the
detection of positive and negative peaks, relatively wide
adaptive moving difference windows that are inversely
proportional to the respiratory rate are proposed. In order to
eliminate the false peaks, the median threshold criterion is
applied in the decision making stage. These solutions ensure
a good reliability during the presence of low frequency
deviations from a zero value line, typically caused by human
torso motions, such as rotation, leaning, etc.

Various body motions produce noise in ECG signal that
might exceed the signal up to 6 times. The proposed heart
rate evaluation algorithm involves a QRS complex
extraction with the eight order IIR band-pass filter, and QRS
peak detection, using a fixed length moving difference
window and a median threshold criterion. This algorithm
enables a detection of QRS complexes with 98.5 %
reliability for ECG signals taken during body motion.

The accuracy of the wearable equipment and data
processing algorithms has been experimentally tested by
comparing its readings with the parallel measurements of the
portable medical patient monitor MEC-1000, the accuracy of
which is 1 % for heart rate measurements and 2 % for
respiratory rate measurements. The results revealed normal
distribution of the differences of heart rate and respiratory
rate values measured with both devices. For both cases,
these differences were statistically insignificant (p-values

0.385 for heart rate and 0.66 for respiratory rate
measurements by standard t-tests), which means that the
difference of accuracy of both monitoring systems are
statistically insignificant.
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