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Abstract—Air core permanent magnet linear synchronous 

motor (ACPMLSM) recommended for applications in which 

the accurate control of speed and position is required.  

Omission of the core in the primary of the motor reduces the 

detent force and increases the controllability of the motor. In 

this paper, the flux density of different parts of an ACPMLSM 

is calculated using both the Maxwell’s equations and finite 

element method (FEM). A precise flux density model is 

presented and the design of the air core double sided permanent 

magnet linear synchronous motor is optimized for the efficiency 

maximization using the genetic algorithm method. 

 
Index Terms—Air core permanent magnet linear 

synchronous motor, flux density, efficiency, genetic algorithm, 

finite element method.  

I. INTRODUCTION 

The permanent magnet linear synchronous motors 

(PMLSM) have taken more attention than linear induction 

motors because of high force density and efficiency, low 

losses, satisfactory dynamic performance and easy control 

[1]–[6]. However, the detent force generated by the slotted 

structure and the end effect caused by the limited length of 

the moving part are the main disadvantages of slotted linear 

motors. Some techniques such as skewing the slots and 

optimizing the permanent magnet (PM) and the width of the 

primary winding have been already suggested to reduce the 

detent force [5]–[7]. Position and speed control of a 

PMLSM can be improved by mitigation or alleviation of the 

detent force. Since using the air-core instead of the iron core 

in a permanent magnet linear synchronous motor 

considerably reduces the detent force; the air core machine 

is usually recommended for high precise applications.  

Some investigations are carried out on the optimal design 

of the PMLSM. It has been shown that some increases in the 

thrust can be achieved by modifying the shape or dimension 

of the permanent magnet and width of the winding [7], [8]. 

The ripple reduction has been the other concern of earlier 

studies [7]. Authors in [9], have been optimized the motor 

design in order to reduce the electrical time constant. In [10] 

increasing the motor thrust and reducing the magnet 
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consumption have been the goals for the optimization. In 

[11], the output power maximization or loss minimization 

has been done for a tubular permanent magnet linear 

synchronous motor.  

In general, the efficiency of a small PMLSM employed in 

a control system, is not considered as the main objective, 

and so the most efforts as mentioned earlier have been 

conducted to improve the transient responses of the machine. 

However, the efficiency is one of the most important criteria 

when employing a motor for the energy conversion 

purposes. Due to the increasingly development of the linear 

motors in the industry, the efficiency optimization needs 

more attention. 

In this paper, efficiency optimization of a four pole 

ACPMLSM is investigated. The paper is organized as the 

following: in section 2, the basic structure of the ACPMLSM 

is presented and the procedures to evaluate the air gap flux 

density distribution are discussed. The flux density 

distributions are obtained by the use of both Maxwell 

equations as an analytical method and the finite element 

method as a numerical method. Finally, a comparison 

between the results is given in section 2. Section 3 involves 

the design formulations and modelling tasks of the 

ACPMLSM defining the existing relationships among some 

performance characteristics and the design parameters. The 

optimization algorithm and the results are presented in 

section 4. Finally, the conclusion and discussion are 

presented in section 5. 

II. FLUX DENSITY DISTRIBUTION OF ACPMLSM 

A. Motor structure 

The structure of an ACPMLSM is shown in Fig. 1 in 

which the moving part of motor is a short primary and 

consists of a three phase air core winding.  
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Fig. 1.  The structure of ACPMLSM. 
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The secondary part involves the N and S permanent 

magnets located on the surfaces of the back irons. The 

primary and the secondary parts are separated by an air gap 

g. The parameters and the dimensions of the motor are 

presented in Table I.  

Supposing that the primary winding is not excited, an 

ACPMLSM, as shown in Fig. 2, contains two layers of iron 

extended along x axis, two layers of PMs and a layer of air 

gap. 

The following assumptions are made for the magnetic 

field calculation [3], [4]: 

1) All the regions (shown in Fig. 2) are extended 

along x± ; 

2) The end effects along z axis are neglected; 

3) The permeability of the PM is considered equal to 

vacuum permeability µ0; 

4)  The permeability of the secondary yoke is infinite. 
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Fig. 2.  Analysis model of an ACPMLSM. 

TABLE I. PARAMETERS OF THE STUDIED MOTOR. 

Parameter Symbol Value 

Number of turns N1 528 

Height of the secondary yoke hb 10 mm  

Width of the motor  L  100 mm 

Pole pitch τ 46.5 mm 

Residual flux density Br 1.2 Tesla 

Width of the PM  τp 40 mm 

Height of the PM  hm 5 mm 

Height of the winding  hc 12 mm 

Air gap length g 0.5 mm 

Width of the winding  wc 15.5 mm 

Relative permeability of PM µr 1.05 

B. Flux density distribution 

Considering Coulomb criteria, 0. =∇ A , Maxwell’s 

equations to calculate the magnetic potential of the PMs can 

be expressed by Laplace and Poisson partial differential 

equations as below [4]: 
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where A  is the magnetic vector potential. Flux density B  is 

obtained by using the vector potential as 

 B A= ∇ × . (2) 

The subscripts determine the regions and 2J  is the 

equivalent current density defining the whole permanent 

magnet effects that can be expressed as the Fourier series [4] 
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where τπ=k  is the spatial frequency. Considering 

Maxwell’s equations ( JH =×∇ ), the boundary condition that 

must be satisfied at the border surface of two materials is as 

below [4] 

 1 2ˆ ( ) 0,n H H× − =  (5) 

where n̂  is a unit vector normal to the boundary surface 

directed from region 2 to region 1 and H  is the magnetic 

field intensity. Equation (5) can be expressed as below [4]: 
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Given the boundary conditions (6) and the excitation 2J  

the X-Y components of the flux density can be expressed as 

below [4]: 
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In the rest of this section, the flux density of the primary 

winding is calculated using the method in [1]. In this 

method, at the first step the magnetic potential of the 

primary winding sA  is calculated based on the magneto 

motive force (MMF) of the traveling magnetic field. At the 

next step, the distribution of the flux density sB  is calculated 

using the magnetic potential. According to the method in [1], 

the amplitude of the ν
th

 harmonic of MMF produced by the 

primary winding is equal to 

 1
6 2 1

,s a w
c

f N I k
pK

ν νπ ν
=  (9) 

where aI  is the RMS value of the phase current, p  is the 

number of pole pairs, νwk  is the winding factor for the thν  

harmonic and cK  is the Carter's coefficient. 

According to Laplace equation and the boundary 

conditions the components of the flux density generated by 

the primary winding in the middle of the air gap can be 

expressed as follows: 
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C. Analytical and FEM results of flux density 

In this section, the results of the flux density obtained by 

the analytic method i.e. Maxwell’s equation, is compared to 

those evaluated by the FEM. X and Y components of the air 

gap flux density distribution are presented as a function of 

displacement in Fig. 3 and Fig. 4 when the motor is open 

circuited. Y component of the flux density in the middle of 

the magnetic air gap is illustrated in Fig. 5.  

 
Fig. 3.  X component of the flux density in the middle of the air gap. 
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Fig. 4.  Y component of the flux density in the middle of the air gap. 

Nonlinearity and saturation of the iron core are considered 

by FEM analysis using the corresponding B-H curves of the 

ferromagnetic materials. In addition, structural complexity 

such as slotting can be simply simulated by FEM. As 

depicted in Figs. 3 and 4, the results obtained by the analytic 

method and FEM are nearly similar. 

In the ACPMLSM, the effective length of the magnetic air 

gap is large. Therefore, as shown in Figs. 4 and 5, the 

distributions of the Y-axis component of the air gap flux 

density in the middle of the mechanical and magnetic air 

gap, are nearly rectangular and sinusoidal, respectively. The 

flux lines of the motor are shown in Figs. 6.  

Assuming balanced three-phase currents 

where ( )tIa ωcos2×= , currents for the time 0=tω  will be 

2=aI , 1−== cb II .  
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Fig. 5.  Y component of the flux density in the middle of the magnetic air 

gap. 

 
Fig. 6.  Flux lines at the center of the motor. 
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Fig. 7.  The first harmonic of vertical component of the air gap flux density 

produced by the PM using analytical method and FEM. 
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Fig. 8.  The first harmonic of horizontal component of the air gap flux 

density produced by the PM using analytical method and FEM. 

Fig. 7 to Fig. 9 illustrate a few samples of the first 
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harmonic of the vertical and horizontal air gap flux densities 

generated individually by the PMs and primary currents 

which are evaluated using Maxwell’s equations and FEM. 

As seen in the figures, the air gap flux density is mainly 

produced by the PM. Also a comparison between the first 

harmonics of the flux densities calculated by the analytical 

model and evaluated by FEM reveals the validity of the 

analytical modeling approach of the flux densities. 
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Fig. 9.  The vertical and the horizontal components of the air gap flux 

density generated by the primary currents at ωt=0 using analytical method 

and FEM. 

III. BASIC EQUATIONS OF SYNCHRONOUS MOTOR 

The phasor diagram of a synchronous motor is shown in 

Fig. 10. The following equations are deduced from the 

vector diagram of Fig. 10 [1]: 

 1 1sin ,d q sqV i R i Xδ = − +  (13) 

 1 1cos ,q d sd fV i R i X Eδ = + +  (14) 

where δ  is the load angle which is the angle between the 

terminal phase voltage 1V  and the no-load voltage fE . 

Parameters sdX  and sqX  are the d and q axis reactance 

respectively, and 1R  is the resistance per phase of the 

primary winding.  
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Fig. 10.  The vector diagram of the synchronous motor. 

According to (13) and (14), the d and q currents are as 

below [1]: 
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The rms value of the primary current can be evaluated 

versus 1V , fE , sdX , sqX , δ and 1R  using 

 
2 2

.s d qI i i= +  (17) 

A. Thrust calculation 

Enduring d-q model of the machine in a synchronously 

rotating reference frame is used for the optimal design 

purposes. In this model, the iron saturation is neglected and 

the flux density distribution along the air gap assumed to be 

sinusoidal. Therefore, the motor thrust can be calculated by 

[12] 

 ( )( )3
,

2
av PM d q d qF L L i i

π
λ

τ
= + −  (18) 

in which PMλ  is the linkage flux per phase caused by the 

PMs and dL  and qL are the d axis and q axis inductances, 

respectively. For a PM motor made by the rare earth 

materials, the relative permeability is somewhat equal to 1 

and thus the material is far to be saturated so that qd LL ≈ .A 

small difference between dL  and qL  yields to a small 

component of the reluctance force which is neglected here. 

Therefore, the mean value of the thrust is simply written as 

 
3

.
2

av PM qF i
π

λ
τ

=  (19) 

B. Losses calculation 

For an ACPMLSM, the resistance of the primary winding 

is considerable compared with the leakage reactance. The 

copper loss of an ACPMLSM is obtained by 

 2
13 .cu sP R I=  (20) 

Iron loss consists of the hysteresis loss and eddy-current 

loss. It can be estimated using [13] 

 2 2 3
, [ ],t h e h m e mP P P k B f k B f W m

β= + = +  (21) 

where mB  is the maximum flux density, hk , ek and β  are 

constants. Constant parameter β  has a value from 1.8 to 2.2 

depending on the laminated materials. Variations of the flux 

density in the yoke can be approximated by Fig. 11.  
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Fig. 11.  Flux density variations in the yoke [14]. 
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At the first stage of designing, an initial estimated value is 

chosen for the maximum flux density of the yoke. The eddy-

current loss density of the yoke is expressed as [14] 

 

2
3

,max8 , [ ],s
ey e y
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P k B W m

τ
τ τ

 
=  

 
 (22) 

where sv  is the linear speed and max,yB  is the maximum 

value of the yoke flux density as shown in Fig. 11. In (22), 

the longitudinal component of the eddy-current loss has been 

ignored. This component is simply taken into account by a 

constant ck  with the value chosen within 1.1 to 1.2 [14]. The 

eddy-current loss of the motor is then written as [14] 
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C. Efficiency calculation  

Given the motor losses and the output power, the 

efficiency is calculated as follows 

 ,out

out cu add t

P

P P P P
η =

+ + +
 (24) 

in which savout vFP .=  is the output power and addP  is the 

additional losses consisting the mechanical and stray losses. 

IV.  OPTIMIZATION 

The optimization problem with n number of variables, m 

number of constraints and the objective function ( )xf , is 

defined as [15] 

 ( ) , ,Maximize f x x K∈  (25) 

where the parameter K  is defined as 

 ( ){ }: 0, 1, 2,..., .
n

iK x R g x i P= ∈ ≤ =  (26) 

In the previous equation ( )xgi  determines the limits of the 

design variables. The design parameters are optimized 

considering the objective functions defined such as thrust 

per volume or mass maximization, volume of the PM 

minimization and power per volume or mass maximization. 

In this paper, the design parameters are optimized for the 

efficiency maximization using the genetic algorithm.  

For the purpose of maximizing the efficiency of the 

motor, four design variables are optimized. These four 

variables are height of the PM, air-gap, height of the primary 

winding and height of the secondary yoke. The width of the 

motor, current density and pole pitch are assumed constants 

specified properly.  

A. Constraints 

Thermal stress and demagnetizing boundary of the PMs 

are considered as constraints. In addition, to prevent 

saturation of the yoke, the minimum values of its dimensions 

are considered. 

The thermal stress which depends on the total losses of 

the motor is given as [16] 

 max ,
TH

losses
T T

hS
∆ = ≤ ∆∑

 (27) 

where h , THS  and maxT∆  are the heat exchange coefficient 

of the surface, heat exchange or cooling surface and 

maximum rise of the operating temperature, respectively. 

Maximum flux density produced by the primary 

currents, sB  has to be smaller than the value that 

demagnetizes the PMs. sB  is given by [16] 

 0 1 143
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To avoid demagnetizing the PMs, primary currents must 

be limited so that [16] 
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where DB  is the critical or minimum allowable magnetic 

flux density of the PMs.  The value of DB  is about -0.2 tesla 

for the Nd-Fe-B magnet.   

A minimum value for the height of the secondary yoke 

can be obtained by using the following equation 

 
1

,min
,max

.
g

y
y

B
h

B
τ=  (30) 

B. Simulation results of optimization 

As mentioned earlier, efficiency maximization is the 

objective of the optimization problem of this paper. The 

rated power outP  and linear speed sν  of the motor are 

assumed 1000 W and 4.65 m/s at 50 Hz supply frequency 

respectively. The additional loss is assumed 4% of the 

output power. The design variables and their variations 

ranges are listed in Table II. The temperature limit of the 

motor is assumed 100 °C and the heat exchange coefficient 

of the surface is assumed h=24.6 (W/m
2°C). The maximum 

flux density of the yoke is 4.1max, =yB  tesla. 

Optimized design variables obtained by the genetic 

algorithm are given in Table III. The results show that the 

efficiency of the optimized motor has been increased by 

4.23% in comparison with the initial design. Also, despite 

the copper loss has reduced by 59.7%, the iron loss has 

increased by 140%. However, the influence of the copper 

loss on the efficiency is more than that of the iron loss, so 

the efficiency of the optimized machine is higher. 

Harmonic contents of the flux density produced by the 

PMs are evaluated using FEM. These Harmonics for the 

initial design and optimized machine are shown in Fig. 12.  

The amplitude of the first harmonic of the flux density 

before and after the optimization is 0.62 and 0.78 Tesla, 

respectively showing an increase of the flux density for the 

optimized machine. However, as expected an increase of the 
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flux density yields to a higher iron loss. 

TABLE II. DESIGN VARIABLES AND THEIR VARIATION RANGES. 

Parameter (unit) Min. Max. 

Air gap length (mm) 0.5 1 

Height of the PM (mm) 4 7 

Height of the secondary yoke (mm) 5 30 

Height of the winding (mm) 5 15 

TABLE III. PARAMETERS OF THE OPTIMIZED MACHINE. 

Parameter (unit) 
Initial 

design 
GA output 

Air gap length (mm)  0.5 0.51 

Height of the PM (mm) 5 7 

Height of the secondary yoke (mm) 10 26.2 

Height of the winding (mm) 12 10 

Cupper loss (W) 103 41.5 

Iron loss (W) 6 14.1 

Efficiency 87 91.23 

 
Fig. 12.  Harmonic contents of y component flux density produced by the 

PMs before and after optimization. 

V. CONCLUSIONS 

A modeling and optimally design procedure of the air-

core double-sided permanent magnet linear synchronous 

motor are presented in this paper. Flux density, MMF and 

other parameters of motor are calculated using the 

Maxwell’s equations based analytical model. The results 

obtained from the analytical model are compared with those 

obtained from the FEM. This comparison confirms the 

accuracy of the presented model. Therefore the analytical 

model proposed in this paper can be applied for analysis, 

design and optimization of the ACPMLSM with some 

confidence. At the last section of the paper, a maximum 

efficiency of ACPMLSM is optimally designed using the 

proposed model coupled with genetic algorithm based 

optimization approach. The simulation results of the 

optimally designed motor indicate that the iron loss 

increases by more than 140% due to the increasing of the 

first harmonic of the flux density from 0.62 to 0.78 tesla. 

Although the iron loss increases, the copper loss reduces up 

to 60%. Since the copper loss has more effect on the 

efficiency, the overall efficiency of the optimally designed 

motor is increased. 
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