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1Abstract—In this paper, capitalizing on Mils ratio for Q-
function approximation, we have presented novel improved
composite Q-function approximation. Based on our improved
approximation, we have further presented tight approximation
for the average symbol error probability (ASEP) expressions of
digital modulations over Nakagami-m fading channels. First,
comparison to other known Q-function closed-form
approximations has been performed, and it has been shown
that accuracy improvement has been achieved in the observed
range of values. Further, it has been shown that by using
proposed approximation, values of average symbol error
probability (ASEP) for some applied modulation formats could
be efficiently and accurately evaluated when transmission over
Nakagami-m fading channels is observed. Also, it has been
shown in the paper that by using proposed approximation,
observed ASEP measures are bounded more closely, than by
using other known Q-function closed-form approximations.

Index Terms—Function approximation; Gaussian
distribution; modulation; Nakagami distribution.

I. INTRODUCTION

Rapid development of various wireless communication
system services, has resulted in constant need for providing
mathematical models of wireless transmission phenomenons.
Wireless propagation is accompanied by various side effects
and drawbacks, among which most important one is
multipath fading. Various fading models are already known
in the literature, however, it was shown that Nakagami-m
fading model provides best fits to collected data in indoor
and outdoor wireless environments [1]. Similarly, best fit to
land-mobile and indoor mobile multipath propagation as
well as scintillating ionospheric radio links can be obtained
by observing Nakagami-m fading model. Nakagami-m
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fading model describes multipath scattering with large delay-
time spreads, and different clusters of reflected waves, it
provides good fits to collected data in indoor and outdoor
wireless environments [1]. Being a general fading
distribution, Nakagami-m fading model includes (as its
singularities) other fading models such are Rayleigh
distribution (by setting parameter m value m = 1), and one-
sided Gaussian distribution (m = 1/2) [2].

In order to predict of behaviour of wireless
communication systems, characterized by a variety of
modulation types, detection types and channel models, one
first must determine standard performance measures of
observed wireless communication system and to observe
how these performance measures depend on key system
parameters values. Performance measure, which usually
quantifies the nature of the wireless communication system
behaviour, by quantifying the reliability or integrity of a
received signal, is the average symbol error probability
(ASEP) [3]. ASEP values are obtained capitalizing on
conditional SEP relations, which are conditioned over fading
statistics which impairs the communication. Conditional
SEPs are functions of the instantaneous state of fading
channel, and functional dependency is determined by the
type of modulation scheme performed. In order to
analytically evaluate ASEP for applied modulation format,
expression for conditional SEP (conditioned over fading
statistics which impairs the communication) should be
averaged over the probability density function (PDF) of the
fading channel amplitude. However, in many such cases the
averaging integral includes either the Gaussian Q-function,
either directly related functions: error function, erf (x),
and/or complementary error function erfc (x).

The Gaussian Q-function is special function, defined as
non-elementary definite integral, so it cannot be expressed as
finite composition of basic functions. This property of Q-
function makes conducting communication systems

Improved Composite Q-Function
Approximation and its Application in ASEP of

Digital Modulations over Fading Channels
Aleksandar Markovic1, Zoran Peric1, Stefan Panic2, Petar Spalevic3, Zoran Todorovic4

1University of Nis, Faculty of Electronic Engineering,
Aleksandra Medvedeva 14, 18000 Nis, Serbia

2University of Pristina, Faculty of Mathematics,
Lole Ribara 29, 38220 Kos. Mitrovica, Serbia

3University of Pristina, Faculty of Technical Sciences,
Knjaza Milosa 7, 38220 Kos. Mitrovica, Serbia

4Department of Technical Sciences, Singidunum University,
Danijelova 32, 11000 Beograd, Serbia

aleksandar.markovic@pr.ac.rs

http://dx.doi.org/10.5755/j01.eie.23.3.18338

83



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 23, NO. 3, 2017

performance analysis, so there arise a need for obtaining
accurate and easily tractable closed-form approximation.
Various approximations have been proposed in the literature
so far [4]–[10].

In this paper we will propose approximation to the
Gaussian Q-function, obtained based on the properties of
Mils ratio approximation [10] for Q-function, but taking the
into account composite properties of minimization MSE
(Mean-square error). Comparison to other known Q-function
closed-form approximations has been performed, and it has
been shown that by using proposed approximation accuracy
improvement has been achieved in whole range of values.
Also, it has been shown that by using proposed
approximation, ASEP values for BPSK and DE-QPSK
applied modulation schemes could be efficiently and
accurately evaluated when transmission over Nakagami-m
fading channels is observed.

II. AN IMPROVED APPROXIMATION OF THE Q-FUNCTION

We start with the formal definition of the Gaussian Q-
function Q(x), defined as [11]–[13] follows
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In the terms of the complementary error function erfc(x),
Q(x) can be expressed as
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In [4] Borjesson and Sundberg had proposed
approximations to Q(x) in the form of
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where a and b are scalar fitting parameters, which can be
determined following some numerical optimization
procedure in order minimize the integral of the absolute
error given by
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with N being the range of argument values of interest.
Namely, solving (4) is equivalent to finding values for

parameters a and b for which MSEmin obtains value which is
as small as possible for the considered interval of x.

As shown in [4], the combination of a = 0.339 and b =
5.510, denoted as Qa-Borjesson-1 (x), gives the best
approximation for x > 0, namely:
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Another widely used approximation for  0,x  is
a = 1 and b = 1 leading to [4]
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However, it has been shown in [4], that all approximations
developed by Borjesson and Sundberg are often not very
suitable for algebraic manipulations related to
communication system performance analysis.

Karagiannidis et al. in paper [6] have proposed
complementary error function approximation in the form of
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with parameters A and B chosen in order to minimize the
integral of the absolute error in the range of interest, [0, R],
i.e.

 
 

   
, 0

1, arg min ,
R

a Karagiannidis
A B

A B Q x Q x dx
R   (8)

where |x| denotes absolute value. The optimal values of A =
1.98, and B = 1.135, for R = 20, are found numerically, by
minimizing the integral of the absolute error [6].

Taking the same form with [6], a simple upper bound of
the Gaussian has been very recently proposed by Jang in [7]
as follows
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Isukapalli approximation expression of Q-function can be
expressed as [8]
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where A and B are selected according to [7]; na is the
number of selected terms depending on the desired tightness.

Chiani approximation expression of Q-function can be
expressed as [5]
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Shi approximation expression of Q-function can be
expressed as [9]
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where ζn and ωn are the nth root of N-order Hermite
polynomial and the corresponding weights. As illustrated in
[9], this approximation result is sufficiently accurate only
with N = 2, i.e., using only two Gauss points.

Prony approximation of the Q-function in terms of two
exponential functions has represented in [14]
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In [15], a very simple result with only one exponential
term was derived. The optimum values of fitting parameters
a and b were given in [15] as 1.394 and 8/13
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Another similar result has recently proposed in [16], also
based on the empirical approach, written as
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where a, b and c R are fitting parameters derived by using
numerical method. Optimum values of fitting parameter (a,
b, c) are provided in [16, Table I], for  0,20x .

Dao et al. have proposed approximations for Q(x)
function given as [17]
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where a = -0.0000009, b = 0.0000104, c = 0.000686, d =
0.015205, e = -0.363992, f = -0.762741 and g = -0.694072.

Polynomial Q-function approximation is given by [18]
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where 3x n and U(x) is the unit step function defined as
U(x) = 1 if x > 0, U(x) = 1/2 if x = 0 and U(x) = 0 if x<0.

Now, let us define novel composite approximation of Q(x)
function with minimal complexity of two regions bounded
by x1
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The idea for constructing such composite function has
occurred by observing property that accuracy in
approximating the Q-function depends on the fitting
parameters, which further strictly, depend on the range of
argument. Starting from Mils ratio approximation with
respect to minimizing MSE value for the considered
intervals of x, after providing minimization of MSE for
observed ranges of 1[0, ]x x and 1[ , ]x x  ,
corresponding values for parameters, x1, a1, a2, b1, and b2 of
x1 = 1, a1 = 0.3442, b1 = 5.339 a2 = 0.31152 and b2 = 6.2076
are obtained.
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In Table I and Fig. 1 we have presented comparison
between Q(x) function and its approximations. As one can
see it is evident that accuracy improvement has been
achieved in whole range of values, by using proposed novel
approximation of Q(x), given by (19).
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Fig. 1. Comparison between the Q(x) approximations.

At Fig. 2 is presented absolute relative error calculated for
proposed Q(x) approximation in comparison with other
approximations.
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TABLE I. COMPARISON AMONG Q(X) FUNCTION APPROXIMATIONS.
Function x=0.1 x=0.3 x=0.5 x=0.7 x=1 x=5 x=10 x=15 x=20 MSE

Q(x) 0.46017 0.38209 0.30854 0.24196 0.15866 2.8665e-07 7.6199e-24 3.6710e-51 2.7536e-89 -
QMSEmin(x) 0.46065 0.38184 0.30837 0.24203 0.15869 2.8686e-07 7.6220e-24 3.6714e-51 2.7538e-89 3.64e-8

QBorjesson-1(x) 0.46020 0.38118 0.30772 0.24148 0.15857 2.8715e-07 7.6243e-24 3.6719e-51 2.7540e-89 1.26e-7
QBorjesson-2(x) 0.39498 0.36530 0.31490 0.25581 0.17110 2.9157e-07 7.6564e-24 3.6790e-51 2.7570e-89 5.5e-4
QKaragiannid.(x) 0.45693 0.38415 0.31232 0.24552 0.16062 2.6174e-07 6.7794e-24 3.2486e-51 2.4321e-89 5.06e-6

QJang(x) 0.46759 0.39842 0.32786 0.26056 0.17287 2.9678e-07 7.6946e-24 3.6871e-51 2.7605e-89 1.38e-4
QIsukapilli(x) 0.45693 0.38416 0.31241 0.24595 0.16247 2.0881e-05 2.2070e-20 8.8628e-47 2.9462e-84 6.63e-6
QChiani(x) 0.33126 0.31511 0.28516 0.24556 0.17890 3.2500e-07 1.6073e-23 1.1553e-50 1.1532e-88 2.45e-3
QShi(x) 0.46017 0.38206 0.30838 0.24154 0.15767 1.6129e-07 9.9883e-25 8.5944e-53 1.0270e-91 1.31e-7

QLoskot(x) 0.35222 0.33081 0.29209 0.24291 0.16573 2.9323e-07 2.3273e-24 7.3499e-53 9.2358e-93 1.62e-3
QSofotasios(x) 0.45846 0.38947 0.31789 0.24929 0.16062 8.4183e-08 2.0086e-25 6.6557e-54 3.0629e-93 2.25e-5
QBenitez(x) 0.45995 0.38282 0.30899 0.24185 0.15809 7.3647e-07 4.9426e-21 1.5065e-43 2.0853e-74 1.24e-7
QDao(x) 0.46002 0.38210 0.30858 0.24200 0.15866 2.8672e-07 9.0226e-24 2.0201e-46 5.4641e-36 2.02e-7
QChen(x) 0.46139 0.38551 0.31352 0.24764 0.16381 1.8652e-14 5.6843e-14 1.3642e-12 3.1832e-12 1.07e-5
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Fig. 2. Absolute relative error for the new approximation of Q(x) in
comparison with other approximations.

As visible from Fig. 2, approximation given with (19) has
minimal relative absolute error and it is more accurate fit
than other approximations in almost whole range of input
arguments.

III. APPLICATION TO THE FADING CHANNELS PERFORMANCE
EVALUATION

Let us now extend our approximation to the case of
Average bit error rate (ABER) values evaluation for given
modulation scheme over Nakagami- fading channels. As
mentioned, we should average expression for conditional
SEP over the probability density function (PDF) of the
fading channel amplitude for applied modulation format.
With the binary phase-shift keying (BPSK) modulation, we
can express the ASEP in the form of
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where x( ) is the PDF of the Nakagami-m fading channel
amplitude. b and 0 denote the average bit energy and the
one-sided noise power spectral density, respectively.

Nakagami-m distributed random processes, has PDF given
in the form of [1]
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with Ω being the average signal power, and m denoting the
inverse normalized variance of x, describing the fading
severity , Γ(m) represents the special Gamma function [19],
Eq. (8.841.4)].

After substituting our expression for approximation of
Q(x) function, (19) we can efficiently evaluate values for
ABER over Nakagami-m fading conditions.

At Fig. 3 is depicted ABER for BPSK over Nakagami-m
fading. It can be seen that ABER for BPSK over Nakagami-
m fading values could be efficiently and accurately evaluated
by proposed method for all considered values of parameter
m. Also can be seen that by using proposed approximation
by (19) ABER measures are bounded more closely than by
using other known Q-function closed-form approximations
in whole range of fading conditions. In order to point out
excellent agreement of approximated ABER BPSK values
with the exact ones, at Fig. 4 we have presented values for
absolute relative error of proposed ABER BPSK
approximation for various values of Nakagami-m channel
conditions.
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Fig. 3. Average BER for BPSK over Nakagami-m fading.
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Fig. 4. Absolute relative error of proposed ABER BPSK approximation.

Let us now extend our approximation to the case of
ABER over coherent detection of Differentially Encoded-
Quadrature Phase Shift Keying (DE-QPSK) over Nakagami-
m fading channels. In [20], it has been shown that the ABER
of DE-QPSK can be obtained by averaging
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where γ(γ) is the Nakagami-m PDF of the signal-to-noise
ratio (SNR) per symbol, distributed according to
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with  denoting the average SNR value of observed
instantaneous process. In the case of (DE-QPSK) error
probability has the expression [11]
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At Fig. 5 is presented ABER for DE-QPSK over
Nakagami-m fading.
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Fig. 5. Average BER for DE-QPSK over Nakagami-m fading.

From Fig. 5, it can be seen that ABER for DE-QPSK over
Nakagami-m fading values also could be efficiently and
accurately evaluated by proposed method for all considered
values of parameter m. Also can be seen that by using
proposed approximation by (19), ABER measures are
bounded more closely than by using other known Q-function
closed-form approximations.

At Fig. 6 we have presented values for absolute relative
error of proposed ASEP DE-QPSK approximation for
various values of Nakagami-m channel, in order to point out
excellent agreement of approximated ASEP DE-QPSK
values with the exact ones.
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Fig. 6. Absolute relative error of proposed ABER DE-QPSK
approximation.

IV. CONCLUSIONS

In this paper, based on Mils ratio approximation of Q-
function, we have presented composite improved
approximation of Q-function, and have shown that by
comparing it to other known Q-function closed-form
approximations, accuracy improvement has been achieved in
whole range of function argument values. Further,
comparisons of ASEP values over Nakagami-m fading
channels for various values of parameter m, obtained by
using presented approximation of Q-function along are
presented for the cases when BPSK and DE-QPSK are
observed. Applicability of given approximation has been
proven by showing that ASEP measures over fading
channels are bounded closely by using proposed
approximation.
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