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1Abstract—The Interpolated DFT is a non time-consuming
supplement to the DFT algorithm. It allows to achieve a much
greater frequency measurement accuracy than the DFT and is
easily applicable to multitone spectrums. A very simple variant
of the Interpolated DFT, proposed and analyzed in previous
papers, was implemented in the frequency meter. The
introduced device allows to check the correctness of the
theoretical limitation and simulation results obtained earlier.
The instrument is based on a microcontroller with a DSP unit
and a 14-bit fast AD converter. The actual properties of the
meter were introduced in the paper. The accuracy of the
frequency measurement, the influence of the number of samples
in a series and the influence of measured signal amplitude
variation during acquiring a series of samples on the accuracy
are consistent with the theoretical limits and simulation results
with one exception. A boundary of the accuracy of frequency
measurement related to used single-precision floating point
format occurred. The limiting parameters of the introduced
meter are: rate of measurements up to 410 per second and
standard deviation about 7.6·10-8.

Index Terms—Discrete Fourier Transform; frequency
estimation; frequency measurement; interpolated DFT; signal
processing.

I. INTRODUCTION

Modern frequency spectrum analysis often involves the
Discrete Fourier Transform calculation. The resolution of
frequency of the signal is limited by the discrete nature of
the obtained spectrum and relatively big frequency quant of
that spectrum. However, the phenomenon of spectral leakage
could be used to increase the precision of the frequency
measurement using the DFT. The first Interpolated DFT
algorithm was proposed in 1970 [1]. In the following years
other versions of Interpolated DFT method were introduced
[2]–[6] and applied in various areas [7], [8]. Most of the
authors analysed their methods analytically or by
simulations. The goal of this paper is to compare the
practical properties of the Interpolated DFT with that of the
theoretical limits. For this purpose, a frequency meter that
implements one of the Interpolated DFT method was built.

To avoid ambiguity the following terminology will be
used. The time domain voltage series of samples are
acquired. The number of samples in a series is called the
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FFT size. By calculating the FFT the digital spectrum is
obtained. The frequency quant of that spectrum is called
frequency bin. Frequency measurement is based on
frequency estimation by the Interpolated DFT method. Many
such estimations form a set of frequency measurements.

The used version of Interpolated DFT is one introduced in
[9]. The calculation of the frequency correction factor δp

consists of only two steps. First, the auxiliary coefficient
γ(δp) is calculated using the values of two greatest points on
spectral line, A(L) and A(L-1) or A(L+1)
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Next the aforementioned coefficient is normalized to
obtain the frequency correction factor δp
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where γ(0) and γ(0.5) are calculated using (1) and are
constant for a chosen windowing function. What is more,
γ(0.5) is equal to 1.5 for all even windowing functions e.g.
cosine, Dolph-Chebyshev and Kaiser-Bessel windows. Thus,
only one coefficient has to be calculated to use the proposed
Interpolated DFT method with a new window.

The method is identical to the analytical solution for the
Blackmann-Harris windows with maximum side-lobe decay,
including the popular Hanning window. For other mentioned
popular windows systematic error is about a thousandth of
the value of the frequency bin.

II. FREQUENCY METER

The block diagram of the frequency meter, that uses the
Interpolated DFT method, is shown in Fig. 1.

A. Analog Part
The input analog signal is conditioned using a single-

ended-to-differential amplifier AD8138, and then sampled
by a 14-bit A/D converter AD9244. A high sampling rate
and high resolution A/D converter requires low jitter clock
and that is why a discrete components crystal oscillator was
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assembled. The power supply of the analog front end has to
be carefully decoupled for ripple and noise suppression
caused by digital parts switching at high frequencies.
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Fig. 1. A block diagram of the frequency meter that uses the Interpolated
DFT method.

B. Digital Part
Digital samples of the input voltage signal are taken and

processed by a 32-bit microcontroller STM32F407VGT,
with a floating point and DSP units. The microcontroller
multiplies samples by the Hanning window, calculates the
FFT and estimates the frequency of the signal using the
Interpolated DFT method (1) and (2). It is possible to set the
FFT size to 1024, 2048, 4096 or 8192 time domain samples
in series. Due to a limitation of the DSP library, the complex
FFT is calculated for a FFT size of 1024 and 4096 samples,
whereas for the other FFT sizes the real FFT is computed.
Additionally, a histogram of the set of frequency
measurements could be counted.

All calculations are made by the microcontroller, however
the device is controlled by a personal computer via an USB
interface. The PC software can display the measured
frequency, series of samples in a time domain, discrete
spectrum or histogram of the frequency measurements.

III. COMPARISON OF METER PROPERTIES TO THE
THEORETICAL LIMITS

Tests were conducted in order to compare meter
properties with the theoretical limits [10], [11] and the
simulation values obtained earlier [12]. A Fluke 6080A/AN
signal generator was the source of the input testing
sinusoidal signal. The sampling frequency was set to
6,144 MHz.

A. Basic Properties of the Meter and the Effect of the FFT
Size

Table I contains the measurement results of input signal
1000 kHz obtained for different FFT sizes, from 1024 to
8192 samples. As expected, the bigger the FFT size the
longer the measurement takes but also better accuracy is
gained. The three most interesting remarks are as follows:
 it is possible to measure the frequency 410 times per
second with the standard deviation of about 1.3 Hz,
 a standard deviation about 0.076 Hz (7.6·10-8) could be
achieved at a rate of 66 measurements per second,
 the greatest profit from the application of the
Interpolated DFT method occurs at the FFT size of 4096
samples.
The profit from the application of the Interpolated DFT is

defined as the ratio of the frequency bin to the standard

deviation of measurements when the Interpolated DFT is
used. It is worth mentioning that the total measurement time
in all cases is about one order of magnitude greater than the
acquiring time, so it is possible to improve the meter by
using a faster DSP.

To illustrate the meter’s quality, histograms of 1000
frequency measurements of input signal 1000 kHz are shown
in Fig. 2 and Fig. 3. They were made for FFT sizes: 1024
and 8192 samples. It can be seen that the spread of measured
values is much smaller for a greater FFT size. Moreover, for
the 8192 sample case almost all measurements take one of
four values, except very few ones that cannot be even seen in
Fig. 3 due to the scale of the Y axis. It is consistent with the
value of standard deviation of that series which is about
0.0762 Hz and it also reveals the limitation of the built
meter. Software analysis led to the conclusion that the limit
is caused by the resolution of the single-precision floating-
point format used by a 32-bit device and software. Indeed,
the smallest difference of real number values near 1000 that
can be preserved, using single-precision floating-point
format, is about 6.1·10-5. That is also the reason why the
profit from the application of the Interpolated DFT is the
greatest for the series of 4096 samples, not 8192 (Table I).
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Fig. 2. A histogram of 1000 frequency measurements using series of 1024
samples each. The frequency error is the difference between the obtained
value of measurement and the mean value of 1000 measurements.
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Fig. 3. A histogram of 1000 frequency measurements using series of 8192
samples each. The frequency error is the difference between the obtained
value of measurement and the mean value of 1000 measurements.

TABLE I. METER PROPERTIES.
Size of FFT: 1024 2048 4096 8192

Acquiring time [ms] 0.17 0.34 0.66 1.34
Total measurement time [ms] 2.44 4.88 9.53 15.2
Rate of measurements [1/s] 410 205 105 66

Standard deviation [Hz] 1.282 0.559 0.1004 0.0762
Frequency bin [Hz] 6000 3000 1500 750

Interpolated DFT gain 4678 5359 14933 9847
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B. The Influence of Input Signal SNR
The existence of noise in the measured signal always

limits the accuracy of the frequency measurement. The
Cramer-Rao Lower Bound (CRLB) for the variance of
estimator of frequency out of N samples when frequency,
phase and amplitude are unknown is given by [10]

2 2
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where SNR is the signal-to-noise ratio of the sampled signal
and T is the sampling interval. In the case of the Interpolated
DFT variance of the measurements can be expressed as [11]
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where Cw is a single coefficient for a given window, that
cumulates the influence of all the constant factors. Equation
(3) is the absolute limit while (4) is the limit of the used
algorithm. Figure 4 shows histograms of the three series of
measurements of signals that differ only in amplitude. It is
equivalent to differing in SNR when all other measurement
conditions are unchanged. The lower the SNR, the wider the
range of obtained values.
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Fig. 4. Histograms of 3 sets of 340 measurements each. The signals differ
only in amplitude which is equivalent to differing in SNR. The range of Y
axis scale is less than needed to display “0 dBm” histogram for clarity
reasons.
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Fig. 5. Standard deviation of frequency measurement normalized in
relation to frequency bin vs. input signal SNR. Each standard deviation
value is calculated of 1000 measurements. The FFT size was set to 8192
samples. “Interpolated DFT limit” was plotted according to (4). Cramer-
Rao Lower Bound was plotted according to (3) but using substitution
T = 1/N in order to normalize in relation to frequency bin.

In the Fig. 5 the comparison between measurement results
and both theoretical limits is shown. For the input signal of
SNR lower than approximately 25 dB the standard deviation
of measurements is exactly as predicted (4) while for SNR
higher than 25 dB the standard deviation reaches a constant
and minimum value. That lower accuracy limit of the meter
is caused by the resolution of the 32-bit floating point format
and not by the method used. This is not a trivial observation
because most often the accuracy of the Interpolated DFT
method, as well as the accuracy of the other frequency
estimation methods, are given without taking into account
the real implementation limitations.

C. The Consequences of Input Signal Amplitude Variations
The measured signal amplitude variations during sampling

is another factor that has an impact on the Interpolated DFT
accuracy [12]. Modulation of input signal amplitude is the
simplest way of modelling that influence. The systematic
error of measurements depends on all three amplitude
modulation parameters: amplitude, frequency and phase
(with respect to the start of acquiring the series of samples).
The results for the carrier signal 1386 kHz, modulated with
frequency of 1 kHz and the FFT size of 8192 samples, are
presented in the Fig. 6 and Fig. 7. For those values the ratio
of the modulation signal frequency and the frequency bin is
about 1.333, which is in the range of the worst cases [12].
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Fig. 6. Standard deviation of frequency measurement normalized in
relation to frequency bin vs. amplitude modulation index. Each standard
deviation value is calculated of 1000 measurements, that started at random
phase of modulating signal. Analytically calculated line bases on averaging
of errors for 63 different phases.
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Fig. 7. Average error of frequency measurement normalized in relation to
frequency bin vs. amplitude modulation index. Each average error value is
calculated of 1000 measurements that started at random phase of
modulating signal. Analytically calculated line bases on averaging of errors
for 63 different phases.
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In many cases the process of acquiring samples is not
correlated to the modulating signal phase. Therefore, it is
enough to collect a set of frequency measurements, that are
started randomly, to estimate the expected values of error
and standard deviation of the frequency measurements. To
be comparable with the measurement results analytical
values have to be calculated as averages for sufficiently
large number of different phases of modulating signal. The
standard deviation values obtained are very similar to the
theoretical ones (Fig. 6), but the measured average error
differs somewhat from the analytically calculated values
(Fig. 7). However, comparing Fig. 6 and Fig. 7 it could be
noted that the absolute value of the mean error is at least 5
times smaller than the value of standard deviation for a given
modulation index. Therefore, the mean error (Fig. 7) has
much less impact on the total measurement error than the
standard deviation (Fig. 6).

D. The Effect of Input Signal Frequency Variations
A set of frequency measurements of variable frequency

signal has similar properties to a series of variable voltage
samples acquired in a time domain. If the rate of frequency
change is less than half the rate of frequency measurement,
then the series of measurements correctly represents
frequency changes (Fig. 8). If the frequency of the input
signal changes faster than half the rate of frequency
measurement then aliasing occurs (or only frequency mixing
according to the pass-band Shannon sampling theory). The
greater the rate of input signal frequency changes, the less
accurate the single frequency measurement. This is due to
the parameter changes of sampled signal during the
acquiring process.
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Fig. 8. Example of frequency measurements of variable frequency signal.
Input signal frequency was binary modulated at 100 Hz modulation rate.

IV. CONCLUSIONS

The introduced meter, that uses the Interpolated DFT,
allowed comparing the theoretical limits and simulation
results obtained earlier with actual meter properties. It
occurs that the accuracy of the frequency measurement, the
influence of number of samples in a series and the influence
of measured signal amplitude variation are consistent with
the theoretical and simulation results except for one case.

For input signal of SNR higher than a certain value
(25 dB for 8192 samples in series), the standard deviation of

measurement reaches a minimum, constant value. Software
tests and analysis of measurement results lead to the
conclusion, that this is caused by the resolution of the used
32-bit floating-point format. Therefore, the accuracy of the
Interpolated DFT method and other frequency estimation
methods should be considered with particular attention to
low SNR level signals because for the high SNR signals the
real implementation limitations could occur. To work around
that problem, a 64-bit floating-point format has to be used.

It should be pointed out, that due to using spectral
analysis, the meter can simultaneously measure the
frequencies of many non-overlapping spectrum lines. The
limiting parameters of the introduced meter are: rate of
measurements up to 410 per second or standard deviation
about 7.6·10-8 but those parameters could be improved by
using faster and more precise calculating device.
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