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Abstract—Industry 4.0 promotes the integration of IT
software technology with the industrial devices of a factory for
the supervision and control of Industrial Automation Systems
(IAS). In this paper, a novel metamodel called iIMMAS
(Industrial Meta-Model for Automation System) is proposed to
simplify the development and deployment of an IAS. The
metamodel provides a language for modelling the industrial
process of a factory through industrial devices (including PLC,
Soft-PLC or RTU) using new abstractions to conceptualize the
IAS. This work presents how the models are performed and
executed on an OPC UA environment, and how they can be
used to generate a program for a PLC. A case study is also
shown to test the applicability of the proposal presented.

Index Terms—OPC unified architecture; industrial
metamodel; software engineering; human machine interface
(HMI); mobile device; supervision control and data acquisition
(SCADA); methodology.

1. INTRODUCTION

Software development is an extensive area generally
related with information technology and computing science,
focused on the methodologies, software infrastructures,
techniques and tools that can assist the development of
complex and large software projects. In industrial
environments, the traditional techniques employed for the
management of software development and deployment are
not being systematically used for several reasons. Firstly,
industrial systems, in practice, may not include software or
its use might be limited, due to the investment in terms of
money and time, especially in very simple productive
processes where it does not need precise control by
software; e.g., although a simple pneumatic system can have
just one button to start and another one to stop, it can include
also a software module for monitoring the operation of the
compressor in a smart display. Secondly, many software
tools have to be managed individually with a limited
integration among them. And lastly, the traditional
programming tools for industry do not have support for
software engineering techniques [1].

In an Industrial Automation System (IAS), the main part
of the developed software is largely based on Programmable
Logic Controllers (PLC) [2]. The software for these devices
is based on the development of sequential programs and, in
some cases, structured programming using structures such as
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function blocks. In this scenario, some standards were
developed to standardize PLCs in industrial systems as well
as the programming languages that could be used, such as
IEC 61131-3 [3].

But this standard is only focused on PLC programming
and it does not contemplate how industrial systems should
be organized regarding other levels. Many well-established
paradigms of IT such as the Object-Oriented Programming
(OOP) and the Development of Model Driven Software
(MDD) are not sufficiently exploited in industrial systems.
For instance, the IEC 61499 standard provides support for
OOP [4], although, despite being 10 years in the market
now, it has not been fully adopted by the industry [5]. The
application of MDD and SOA paradigms is more limited
and, therefore, it is not yet clear how they must be adopted
[6].

On the other hand, software requirements in current
industrial systems are becoming a major need. In fact, in the
last decade, the ratio of software development with respect
to the costs of machinery has doubled from 20 % to 40 %
and this trend continues to increase progressively [6].
Moreover, the industrial companies have to adapt quickly to
the market developing flexible, scalable systems easy to
maintain for reducing the costs of the production process
and time-to-market, improving the product quality, reducing
energy consumption and contributing to environment
sustainability.

These challenges are very difficult to confront with
traditional approaches. The use of software engineering
techniques is necessary in order to provide systematic
methods to design and develop industrial processes, and,
furthermore, to determine how they are deployed on the
different computing devices involved, such as the PLC, the
Machine Interface (HMI) systems (or Supervisory Control
And Data Acquisition (SCADA)), and the intermediate
systems between PLC and HMI/SCADA.

Model Driven Engineering (MDE) is a software
engineering paradigm that promotes the creation of
conceptual models procuring an abstract representation of
the requirements, functionalities and any other topic related
to a specific problem to be solved by a software system.
Then, from these models and the application of a systematic
methodology, the engineer can generate an implementation
of the system that is correct-by-construction.

The supervision of an industrial process requires the
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monitoring of thousands of signals, each one in charge of
some specific aspects. Thus, a modelling of industrial
processes from the requirements can help engineers to
organize the software from both structural and behavioural
views. MDE can give an additional abstraction layer,
generalizing the common patterns and elements that govern
a specific industrial process into a meta-model. As a result,
the meta-model provides a common language to express the
industrial elements participating in the industrial process,
including the behaviour of these elements.

Accordingly, MDE contributes to the definition of new
concepts to the Industry 4.0 [7], [8], where a smart factory
can help to achieve integrated and easily reconfigurable
industrial systems covering the production demands,
according to the needs of the increasingly changing market.
In this sense, all the elements of our IAS are based on a
model that can be improved by the introduction of behaviour
modelling and transformation rules [9].

In this paper, a novel meta-model called iIMMAS
(Industrial Meta-Model for Automation System) is proposed
to simplify the development and deployment of an IAS. The
meta-model provides a language with a concrete syntax and
specific semantic for modelling those industrial devices
(including PLC, Soft-PLC or RTU) using new abstractions
to conceptualize the IAS. Thereby, the meta-model gives a
set of rules and a method to assist the engineer/developer in
the modelling process.

Besides, models carried out with iMAAS can be run in an
executable environment at runtime inside the scope of OPC
UA technology. That is, an OPC UA client from a third-
party can access to the OPC UA server and can manage
directly the iIMMAS models, disengaging the industrial
processes and hiding the industrial devices of the factory
plant.

Finally, iMMAS can address the software development
process of industrial devices from iMMAS models according
to a model-driven approach. In this way, the development of
an IAS is performed by using high-level abstractions instead
of using low-level abstractions at PLC level.

In section II, a contextualization of different standard and
software engineering techniques used within the industrial
system is summarized and the current situation of relevant
standards related with industrial systems is revised. Section
IIT presents IMMAS focusing on the two first levels of the
meta-model, and the general rules to deploy a model on
OPC-UA server and to generate a PLC program. Section IV
explains how to create a specific model based on iIMMAS,
and how to deploy it in a software control system to manage
a modelled climate room as an example. Finally, the last
section covers the conclusions and future works.

II. BACKGROUND

The industrial community has developed several standards
during the last years to regulate the process of software
development for specific industrial devices, integrating the
software of different machines placed in a factory plant.

For example, IEC 61131-3 standard is oriented to the
programming of PLC devices [4], and its last version (third
edition) includes a specific extension to support object-
oriented programming [10]. However, ISA-88 standard [6]

is focused on issues related with system configuration and
system integration, specifically for process control systems
on batch, although it can also be applied to discrete,
continuous, hybrid, and storage process control [11]. In this
sense, the ISA-95 standard (standardized internationally as
IEC 62264 [12]) delves into how the integration between
IAS systems and business systems like ERP (Enterprise
Resource Planning) and MES (Manufacturing Executing
System) can be done, defining the interface between control
functions/systems and other enterprise functions/systems.

A software developer on IAS will face a laborious work
related with integration and deployment issues between
systems [13], horizontal (e.g., communication HMI to HMI)
and vertical (e.g. communication BATCH systems and MES
system). In addition, the software developer has to develop
the IAS system; that is, programming PLC devices and HMI
systems (usually SCADA systems), and establishing the
communication between both systems [14].

Unfortunately, the aforementioned standards provide only
general rules for guiding and they do not include any
software development methodology [9]. Conversely, MDE
has been successfully applied to the development of IT
systems [15]. It provides a methodology driven by models,
structuring the development of a complex system in separate
abstraction levels, from conceptual high-level models to
implementation low-level models. Then, the software
development process implies a transformation between
models until a low level model, the program, is constructed.
The separation of the software development at two levels,
the design of high-level conceptual models to conceptualize
abstractions, and the development based on the
transformation between models on different domains, give
the essential pillars of MDE [16].

The MDE application to IAS can be similar to IT systems
[10]. The industrial systems can be seen as models at
different levels: at PLC programming domain, where the
signals are captured to reflect the physical environment; at
OPC domain, where the signals are captured as data to be
exposed to the rest of industrial systems; and, finally, at a
MES domain, where the industrial process is governed.
Then, it is potentially possible to perform models at different
domain levels, and the definition of rules to perform
transformations between domains.

The Object Management Group (OMG) [17] is a non-
profit organization especially oriented towards business
information technology, who defines and guides the
application of MDE paradigm to IT systems. In fact, they
defined a number of standards for MDE, in particular model-
driven architecture (MDA), based on MetaObject Facility
(MOF) [18] and Unified Modelling Language (UML) [19].
UML provides a number of diagram representations to
capture the requirements, structure, behaviour and even the
refinements to executable code, although it does not define
the methodology to be applied to develop the software.
System Modeling Language (SysML) [20] is a UML
derivative for system engineering applications that is getting
increasingly popular; e.g. in Manufacturing Machinery [21].
In particular, SysML supports specific diagram
representations such design phases for capturing and
formalizing the requirements.
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There are several works related with the using of UML in
software engineering [6]. On one hand, Papakonstantinou et
al. proposed a way to generate IEC 61499 function blocks
from UML diagrams [22]. On the other hand, Thramboulidis
described a UML-FB architecture for generating UML
diagrams to build Function Blocks [5]. Moreover, Fan et al.
developed an extension to UML for industrial system called
UML-PA (UML for Process Automation) [23].

The use of software methodology to IAS domain could be
very beneficial and could reduce the time of design and
developing industrial system. Unfortunately, they are not
currently specific tools adapted to IAS [6].

Although the application of MDE paradigm and software
engineering were limited, the manufacturers of industrial
devices can develop some specific software tools to resolve
specific issues such as the PLC programming, the definition
of simple data models of PLCs, or the configuration and
integration of industrial devices in SCADA. In industrial
systems, OPC (Ole for process control) [24] systems provide
a common way to decouple the control domain from the
instrument domain, providing a communication interface to
standardize the data exchange with industrial devices using a
data access model. Recently, the OPC Foundation [25] has
released OPC UA [26], a standard that has native support for
modelling and deployment of models directly, opening the
possibility of applying MDE paradigm for IAS in order to
develop software driven by models. This paper shows a
proposal of how OPC UA [27] can exploit MDE principles
to develop industrial systems.

III. INDUSTRIAL META MODEL FOR AUTOMATION SYSTEM
(IMMAS)

iMMAS (Industrial meta model for automation systems) is
a specific meta-model conceived for the development and
deployment of an industrial automation system based on a
model-driven approach. The meta-model of iIMMAS
provides a common language with a concrete syntax and
specific semantic, which is adapted from the information
model of OPC UA, in order to model any IAS.

The modelling process defined in iIMMAS provides a
systematic method for characterizing the industrial elements
that are involved in an industrial process. The models can be
executed directly on OPC UA environments using client-
server architecture, facilitating in this way its integration
with other industrial systems. The models are stored

persistently in an OPC UA server using the address model of
OPC UA and data are collected from industrial hardware
devices (e.g., PLC). All models and data are kept on an OPC
UA server, which is accessible for any integrated system that
acts as an OPC UA client. Furthermore, models created from
iIMMAS metamodel can help to generate a program for
industrial devices transparently to the developer in order to
simplify the signal capturing and storing further on the OPC-
UA server. For instance, the program loads on a PLC device
can be obtained directly by transformation of iMMAS
models. Figure 1 shows the relevant features of an iMMAS
infrastructure.

Industrial
Devices

OPC UA Server

Fig. 1. The meta-model of iIMMAS provides a language for designing
models of IAS that can be executed on OPC-UA servers and can generate a
program for PLC devices.

A. IMMAS Meta-Model

The meta-model establishes the bases of the modelling
language defined by iMMAS to model any industrial process
and the structure of the industrial devices at different
abstraction layers. Moreover, developed models are
independent of the software and hardware platform, since
they are managed as abstractions that can be implemented in
any programming language supporting abstract objects or
data definition and can be further deployed on specific
hardware or software platform.

The models conforming to iMMAS are also based on the
information model of OPC UA, which it allows executing
directly the models on an OPC UA environment as
executable models. Figure 2 shows the main abstractions
employed by the information model of OPC UA, while
Fig. 3 shows an example of how the new abstractions of
iIMMAS are built over the model of OPC UA.
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Fig. 2. Basic and Main concepts of OPC UA data Metamodel.



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 23, NO. 3, 2017

The executable models of iMMAS include not only the
models, abstractions and their relationships, close to data
managed by industrial devices. In addition, models and data
are also accessible to any other OPC UA client interested in
the supervision, monitoring or management of the industrial
processes.

The architecture of IMMAS meta-model is composed of
three hierarchical layers in a similar way as other standards
as ISA 88 [28]:

— Layer 0: This layer is built over OPC UA. A selection
of the abstract elements managed by the OPC UA meta-
model is necessary to define the basic elements of
iMMAS: PlcData and  SimpleObject.  PlcData
encapsulates the minimum data unit managed in an
industrial device, while a SimpleObject specifies the
minimum abstraction unit in iMMAS. A simpleObject
characterizes a valued data managed by the industrial
system, such as a temperature signal, while PlcData
indicates the datatype in use to represent the signal.

— Layer I: Tt includes the elements related with the input

and output signals used by industrial devices to control a

concrete process. In addition, it includes the definition of

specialized objects to manage data from these inputs and
outputs.

— Layer 2: In this layer we can define the structure of

complex abstractions as a composition of elements of a

lower layer. In addition, we can determine the behaviour

of these abstractions or the industrial process driven by an
algorithm, a rule or a configuration set. Some examples
are regulators, bombs, motors, etc.

The models in iMMAS are created applying a structured
strategy in three levels based on the requirements of the
process. For example, a model at layer 2 can include the
definition of a pump including a simple analogue device of
layer 1. However, at layer 1 the model can only include
elements of the same level. Figure 3—Fig. 5 show the basic
elements of iIMMAS in each layer. In this paper, only a
definition of layer 0 and 1 is presented in order to show how
the traditional signals conveying from/to a PLC can be
organized in OPC-UA server with iMMAS models.
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= simpleObject fplcDataType

-sta : plcData “variableName : OPCUAstring
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« getStatus() : plcData

*getVal() : plcData = OPCUAODbject
Object

+ =0OPCUA:DataValue
 ObjectType DataValue

Fig. 3. iMMAS meta-model of level 0 built over OPC UA meta-model.

The meta-model of IMMAS at layer 0 defines a new type
of object plcDataObject as the minimum data. This new type
of object provides a new data type that allows working with
different types of PLCs. It has a method for writing and
reading values on a PLC memory address and two properties
to store and name. A property variable Name is defined in
this case. The next object is the main object type of this level

SimpleObject. A SimpleObject has defined two properties,
status and value of plcDataObject type and it contains
methods for activating or deactivating the object and reading
the value of the object.
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Fig. 4. Concepts (I/O) of iIMMAS that form the level 1.
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Fig. 5. Concepts (actuator/instrumentation), based in the level 1, for
level 2.

The next sections show how the iIMMAS models of
layer 1 have been implemented in the OPC UA standard and
how iMMAS models can be used to generate the programs
to be loaded on a PLCs. In this way we can see how we can
manage iMMAS in a real industrial system.
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B. Deployment on OPC UA Server

OPC UA provides a more flexible approach for
controlling and supervising an industrial process than classic
OPC. The inclusion of iMMAS over OPC UA gives an
additional flexibility to manage data of control processes.
Commercial OPC UA clients have usually a lack of support
for accessing abstract models of OPC UA servers. For this
reason, we have developed a specific HMI application as an
OPC UA client, which invokes the methods of iMMAS
objects for controlling and monitoring the industrial process.

The definition of iIMMAS models over an OPC UA
information model guarantees that models are executable on
an OPC UA environment. To test the applicability of our
proposal, we have developed an OPC UA server using the
C# stack of the OPC Foundation [25] and an implementation
of iMMAS meta-model on OPC UA. The injection of the
meta-model in OPC UA server is achieved by a description
of all iIMMAS elements in a XML file. Besides, XML files
are compiled and imported to OPC UA server by using a
tool of OPC Foundation named OpcUaModelCompiler.exe.
An example of the definition of plcData and SimpleObject is
shown below. Both objects are defined from the concepts
that the information model of OPC UA provides [26]. In this
case, BaseObjectType is used as a basic type to define PLC
Data and SimpleObject.

This procedure guarantees that the models created in
iMMAS are addressable by any OPC UA client. The
following code shows a XML description of the iIMMAS
models.

<ObjectType SymbolicName="coreiMMASL]1:plcData"
BaseType="OpcUa:BaseObjectType">
<Children>
<Property SymbolicName="coreiMMASLI:deviceDirection"
DataType="OpcUa:String" />
<Property SymbolicName="coreiMMASLI:dataType"
DataType="OpcUa:String" />
<Variable SymbolicName="coreiMMASL]1:value"
DataType="OpcUa:DataValue" />
<Method SymbolicName="coreiMMASLI:read"
TypeDefinition="coreiMMASLI1:TypeRead" />
<Method SymbolicName="coreiMMASLI :write"
TypeDefinition="coreiMMASLI1:TypeWrite" />
</Children>
</ObjectType>
<ObjectType SymbolicName="coreiMMASLI:simpleObject"
BaseType="OpcUa:BaseObjectType">
<Children>
<Object SymbolicName="coreiMMASL1:value"
TypeDefinition="coreiMMASLI:plcData" />
<Object SymbolicName="coreiMMASL1:sta"
TypeDefinition="coreiMMASLI1:plcData" />
<Method SymbolicName="coreiMMASLI:getValue"
TypeDefinition="coreiMMASLI1:TypeRead" />
<Method SymbolicName="coreiMMASLI1:getStatus"
TypeDefinition="coreiMMASLI:TypeRead" />
<Method SymbolicName="coreiMMASL1:active"
TypeDefinition="coreiMMASLI1:TypeMethod" />
<Method SymbolicName="coreiMMASL1:deactive"
TypeDefinition="coreiMMASLI1:TypeMethod" />
</Children>
</ObjectType>

C. Generation of a PLC Program.

The flexibility of the abstraction models in iMMAS can
be used to implement code in industrial devices based on a

MDE paradigm. Therefore, a program can be generated
from abstract models specifically to a concrete PLC device,
independently of its manufacturer.

In this section, an implementation of iMMAS model is
performed for two PLC devices from different manufacturer
(Siemens and Beckoff) based on the definition of user data
types (UDT). The definition of UDT in any industrial
software application provides a convenient way to organize
the data model supported by the PLC device that can be
propagated furthermore to other industrial systems such as
OPC or SCADA. Then, UDTs are responsible to capture the
data structure that can be recorded on the PLC memory.

The programming of a data model on a PLC can be
achieved by transforming the iMMAS meta-model to the
definition of the same types using UDT. Thus, we have
created specific UDTs to group several primitive data type
(real, int and bool) for each object of iIMMAS meta-model
(SimpleObject or PLCData). Table I shows how the
simpleObject of iIMMAS is defined by UDTs in Siemens,
whereas Table II shows the same objects in Beckhoft.

TABLE I. DEFINITION OF SIMPLEOBJECT ACCORDING TO
SIEMENS PLC USER DATA STRUCTURES (UDT).

TYPE "SimpleObjectReal" TYPE "SimpleObjectBool"
VERSION : 0.1 VERSION : 0.1

STRUCT STRUCT

value : REAL ; value : BOOL;

sta : BOOL ; sta : BOOL ;

END STRUCT; END STRUCT ;
END_TYPE END_TYPE
TYPE "SimpleObjectInt" TYPE "SimpleObjectChar"
VERSION : 0.1 VERSION : 0.1

STRUCT STRUCT

value : DINT; value : CHAR;

sta : BOOL ; sta : BOOL ;

END_STRUCT ; END_STRUCT ;
END TYPE END TYPE

TABLE II. DEFINITION OF SIMPLEOBJECT ACCORDING TO
SIEMENS PLC USER DATA STRUCTURES (UDT).

TYPE SimpleObjectReal : TYPE SimpleObjectBool:

STRUCT STRUCT

value : REAL ; value : BOOL;

sta : BOOL ; sta : BOOL ;

END STRUCT END STRUCT
END_TYPE END_TYPE
TYPE SimpleObjectlnt: TYPE SimpleObjectChar:

STRUCT STRUCT

value : DINT; value : STRING;

sta : BOOL ; sta : BOOL ;

END _STRUCT; END STRUCT
END_TYPE END_TYPE

IV. THE INDUSTRIAL PROCESS

For testing our solution, a small control system for
regulating the temperature of a scale modelled-room is used.
This modelled-room includes the following elements:

— Fan. It has an actuator controlled by an analog output to

specify the speed of the fan from 0 to 100, and a sensor

through an analog input to know the current speed of the
fan in order to check the operation of the fan.

— Heater. 1t includes an actuator with an analog output to

set the intensity of the heater from 0 to 100.

— Temperature Sensor. It includes an analog input to
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measure the temperature level of the room.
— Slicing wall. 1t contains a motor controlled by two
digital outputs to move the wall to the right or to the left,
and two switches connected to digital inputs to determine
if the wall achieved the most right position or the most left
position. This element can increment or reduce the
volume of the room to be controlled, producing
perturbation to the system.

— Openable Roof. The roof is controlled by two digital

outputs to open or close it, and two digital inputs to know

if the roof is open or closed.

For monitoring the system, we connected all the actuators
and sensors to a Siemens PLC system with an external board
containing digital inputs/outputs and analog inputs/outputs.
All the devices were connected to a Profibus DP fieldbus.
The inputs read analog signals of 0-10v, while the outputs
were established by analog signals of 0-10v. Figure 6 shows
the scale-modelled room and the industrial devices.

Fig. 6. Climate room model where the sensors and actuators are connected
to the PLC device.

A. Model of the Plant

iMMAS enhances the building of the structure of the IAS
as the first stage of modelling, because the abstractions
contain the behaviour of the industrial process. Then, we can
view an industrial process as a composition of a set of plant
elements, which hides the abstractions.

Figure 7 provides an abstract model of the climate room
managing abstractions defined in the level one and two of
the meta-model of iIMMAS. The model is structured in two
subsystems: a TemperatureControlSubsystem subsystem to
regulate the temperature of the climate room and a
PerturbationSubsystem subsystem to modify the conditions
of the climate room. Both subsystems have a structure based
on the physical elements of the plant, starting from the
abstractions available in the meta-model. In fact, there is a
mapping between the physical elements of the plant and the
objects of the model. This simplifies the implementation of
the model, and gives a structured way to face the system.

The attributes of the classes define the properties of each
object and their values identify the current status of the
object. The object methods encapsulate the behaviour
through actions, which include the invocation of methods in
related objects. TemperatureControlSubsystem includes the
following classes:

— Fan: A Fan object contains 2 objects, SpeedOrder

based in an analogOutPut and a realSpeed object based in

an analoglnput.

— Temperature: it is a subclass of analogOutput class.
— Heater: A Heater object has only one analogOutput.
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Fig. 7. Model based in iMMAS to collect the elements of climate room
Model.

The main classes of PerturbationSubsystem are the
following ones:
— Wall: This class models the behaviour of the wall. It has
2 digitalOutput to move the wall to the right or to the left
and 2 digitallnput to know if the wall is in the left position
or in the right position.
— Roof: This class abstracts the roof with 2 digitalOutput
to open or close the roof and 2 digitallnput to know if the
roof is open or closed.

B. Deployment on an OPC-UA Server

The model of Fig. 6 can be uploaded to any OPC-UA
server, since the objects of this model are derived from the
abstractions defined on the meta-model of iIMMAS, which is
based on OPC UA information model. Thus, each object of
our model can be exported as an OPC-UA object and hosted
to the OPC UA server, which can be accessible in a name
space by any OPC UA client.

In order to upload the objects of the model in an OPC UA
server, we need to obtain an XML file according to the
specification of OPC UA. This file contains the objects of
the model and their relationship, and they can be imported
by the OPC UA server. As an example, we can see below the
XML definition for OPC UA server of the Wall object.

The OPC UA specification of a Wall object based on
iIMMAS written in XML:

The Wall object includes the objects that determine its
behaviour. Since OPC UA objects are included in nodes, it
is possible to access any object by the OPC UA client. Any
OPC UA client can read or write the attributes of any OPC
UA object, when it is connected to the OPC UA server.
Besides, an OPC-UA client can invoke object methods
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whenever the OPC-UA client has a full support of OPC-UA
information model. Figure 8 shows how the objects can be
seen by a commercial OPC UA Client.

<Object SymbolicName="coreiMMASLI1:Wall"
TypeDefinition="OpcUa:FolderType">
<Children>
<Object SymbolicName="coreiMMASL1:right"
TypeDefinition="coreiMMASL1:digitalOutput" />
<Object SymbolicName="coreiMMASL1:left"
TypeDefinition="coreiMMASL1:digitalOutput" />
<Object SymbolicName="coreiMMASL1:finishRight"
TypeDefinition="coreiMMASLI1:digitallnput" />
<Object SymbolicName="coreiMMASL1:finishLeft"
TypeDefinition="coreiMMASLI1:digitallnput" />

</Children>
</Object>
[l Prosys OPC UA Java Client - [u} X
UA Sample Server | &
=R — EECEY
'_W Attributes and References | % |
e
¢ @Fan Q@
o @ reaispeed
> @ speedorder Atrivute I Value
¢ @ Heater o Nodeld |i=ss
& i active NodeClass [Object
o {5} deactive (Objects
o {5} getStatus Objects. [FolderType
b4 ool Description [0 The browse entry paint when L
T®e WiiteMask INONE (0)
> @ value INONE (0)

¢ @ Rool Eventotifier Jo

o @ finishClose
o~ @ finishOpen
o @ open

- : Temperature

B wan
o @ finishLeft
o @ finishRight
o @ lett

Fig. 8. An OPC UA client can browse the objects of the model hosted on
the OPC UA server.

C. Generation and Deployment of a PLC Program

Once the mapping between iIMMAS meta-model and
UDT types are established, a specific data model for a PLC
can be generated from the specific model in iIMMAS.
Siemens provides convenient tools for programming PLC
and its configuration. The data model structured with UDTs
is stored in the PLC memory into data blocks (DBs) that can
be addressed by OPC UA server. In our case we have used
Step7 5.5 and not the last version of Siemens software (TIA
Portal) because with this version of software we can work
with old systems and devices such as a Siemens 300 PLC.

D.Generation and Deployment of a Program for Siemens
PLC

Following the example shown in the former section, now
we can see how the wall object has been defined by UDTs in
a Siemens device in Table III.

TABLE III. UDT AND DB SPECIFICATIONS OF THE WALL OBJECT

FOR SIEMENS PLC.
TYPE "DigitalDetector" TYPE "DigitalOrder"
VERSION : 0.1 VERSION : 0.1
STRUCT STRUCT
detector : "digitallnput"; order : "digitalOutput";
END STRUCT; END_STRUCT ;
END_TYPE END_TYPE

DATA_BLOCK "Wall"
TITLE =Element Climate Room
VERSION : 0.1
STRUCT
right : "DigitalOrder";
left : "DigitalOrder";
finishLeft : "DigitalDetector";
finishRight : ""DigitalDetector";

END_STRUCT ;
BEGIN

right.order.out.sta := TRUE;

left.order.out.value := FALSE;
left.order.out.sta := TRUE;

END_DATA_BLOCK

right.order.sim.valuesim.value := FALSE;
right.order.sim.valuesim.sta := TRUE;
right.order.out.value := FALSE;

left.order.sim.valuesim.value := FALSE;
left.order.sim.valuesim.sta := TRUE;

finishLeft.detector.sim.valuesim.value := FALSE;
finishLeft.detector.sim.valuesim.sta := TRUE;
finishLeft.detector.in.value := FALSE;
finishLeft.detector.in.sta := TRUE;
finishRight.detector.sim.valuesim.value := FALSE;
finishRight.detector.sim.valuesim.sta := TRUE;
finishRight.detector.in.value := FALSE;
finishRight.detector.in.sta := TRUE;

Two new UDTs have been created for DigitalDetector
and DigitalOrder objects to define the wall object. Then,
DBs have been created with these model objects in Fig. 9.

From a model we can create the Siemens DB based in
UDT by applying a transformation between both models.
The result of the transformation is shown in the Fig. 9.
Table IV provides an example of how the mapping is carried
out described in XML. Basically, we associated one iMMAS
object with one Siemens DB direction.

right "DigitalOrder"

left "DigitalOrder"

finishLeft

"DigitalDetector

£inishRight "Digital

ALSE
TRUE
FALSE
TRUE
FALSE
TRUE
FALSE
TRUE
FALSE
TRUE
FALSE
TRUE
FALSE
TRUE
FALSE
TRUE

Fig. 9. Siemens STEP 7 representation as result of the instantiation of the

UDT/DB specification of the Wall.

TABLE IV. XML FILE WHICH INCLUDES THE MAPPINGS
BETWEEN SIEMENS OBJECTS AND OPC UA OBJECTS.

<left> <finishleft>
<object ID="1106" name="sta" > <object ID="1116" name="sta" >
<dataType> <dataType>
BOOL BOOL
</dataType> </dataType>
<deviceDirection> <deviceDirection>
DB1.DBX 10.1 DB1.DBX 12.1
</deviceDirection> </deviceDirection>
</object> </object>
<object ID="1098" name="value" > <object ID="1198" name="value" >
<dataType> <dataType>
BOOL BOOL
</dataType> </dataType>
<deviceDirection> <deviceDirection>
DB1.DBX 10.0 DB1.DBX 12.0
</deviceDirection> </deviceDirection>
</object> </object>
</left> </finishleft>
<right> <finishright>
<object ID="917" name="sta" > <object ID="916" name="sta" >
<dataType> <dataType>
BOOL BOOL
</dataType> </dataType>
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<deviceDirection> <deviceDirection>
DBI1.DBX 14.1 DBI1.DBX 16.1
</deviceDirection> </deviceDirection>
</object> </object>
<object ID="909" name="value" > <object ID="998" name="value" >
<dataType> <dataType>
BOOL BOOL
</dataType> </dataType>
<deviceDirection> <deviceDirection>
DB1.DBX 14.0 DB1.DBX 16.0
</deviceDirection> </deviceDirection>
</object> </object>
</right> </finishright>

E. Mobile HMI Client

The tools and frameworks based on SCADA or HMI do
not support the full information model of OPC-UA model.
We developed a specific HMI application that can be
deployed on smartphones and tablets with Android
ecosystem [29]. The tactile native application shows the
value of the signals of each object in a graphic fashion as
Fig. 10 shows.

Climate Room SCADA

Fig. 10. A screen capture of the HMI on which a client OPC UA is
running in a tablet device.

Conversely, the user can settle the set-points or provoke
perturbations into the system. Internally, the OPC UA client
invokes methods on iIMMAS models hosted by OPC UA
server.

V.CONCLUSIONS

OPC-UA have supposed a change of paradigm in the way
that industrial systems and industrial processes can be
organized and can be accessed by other industrial systems in
an IAS. In this paper, we have presented a novel approach
based on OPC-UA, named iMMAS, which provides a simple
way to describe industrial processes as well as the
organization of the IAS, managing new basic abstractions
and concepts close to the language of industrial engineers
supported by metamodels in three layers.

On the other hand, the application of MDE principles in
iMMAS opens the possibility to generate software at
different levels by means of the same conceptual models.
These models can be executed directly facilitating its
integration with the rest of industrial systems and providing
at the same time a common data access that can be exploited
by other systems such MES. In this work we explored how a
program for a PLC device can be built applying a
transformation process to data models hosted on an OPC-
UA server. This transformation process is completely
interoperable among different manufacturers of PLC devices
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as long as UDTs are known in a specific PLC solution.

Furthermore, the models designed with iMMAS can be
also extended to HMI or SCADA scope, simplifying the
visualization of the models to users. As a future work we
want to improve the transformation process between
different metamodels defining transformation rules that
facilitates this process automatically.

Other important challenge to be addressed in a future
work is the behavior modeling in iIMMAS, based for
example on some industrial standard for this purpose, such
as ISA 88 [28].
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