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Introduction 
 

Surface electromyography (sEMG) signals are among 
the most meaningful electro-physiological signals. 
However, the use of sEMG signals is challenging in both 
medical and engineering applications [1, 2] and in 
deploying sEMG signals as a diagnostic tool or a control 
signal, the feature extraction method is an important issue 
in achieving the optimal performance in classifying the 
sEMG pattern. 

During the last two decades, many extraction 
techniques have been proposed in several domains [2], 
notably the time domain, the frequency domain and the 
time-frequency or time-scale domain. Among these 
techniques, features based on wavelet analysis are widely 
used as an efficient tool to extract useful information from 
the sEMG signal [3, 4]. 

Due to a complexity and non-stationarity of sEMG, a 
large number of studies have focused on the investigation 
and evaluation of the optimal features obtained from 
wavelet coefficients [4–15]. Many applications of pattern 
classification by wavelet analysis based on EMG feature 
extraction have been proposed, such as in sport science [5], 
determining muscle force and muscle fatigue [6–8], 
characterizing low-back pain [9], and identifying hand 
motions for the control of prostheses [4, 10–15]. 

Most studies to date have focused on applications 
classifying hand motions, and in the present study sEMG 
data were acquired from a volunteer performing six hand 
motions from two forearm muscles. 

Discrete wavelet transform (DWT) is a time-scale 
approach that has been used successfully in many 
applications [16–18] and in the studies cited above, DWT 
has been successful in analysing non-stationary signals 
including sEMG signal. However, DWT yields a high-
dimensional feature vector [10–12], that generally causes 
an increase in the learning parameters of a classifier [4]. 
Therefore, a method of reducing the dimensionality of the 

feature vector must be employed which preserves the 
classification accuracy [10]. Further, the classification 
performance resulting from using all the original wavelet 
coefficients is very poor judged both by computation cost 
and classification accuracy. For these reasons, the selection 
of the optimal dimensionality reduction method for the 
wavelet analysis is important before the feature vector is 
applied in the learning parameters of a classifier [11]. 
Commonly, dimensionality reduction methods can be 
implemented as methods of feature projection and feature 
selection [2, 11–13]. However, the feature projection 
approach shows superior results to the feature selection 
method [4]. Therefore, in this study only the projection 
method is considered. 

The feature projection method attempts to determine 
the best combination of original wavelet coefficients and 
additionally, the features reduced are different from the 
original features. Commonly, the feature projection 
method is applied using principal component analysis 
(PCA) [19], an un-supervised linear transformation. 
However, different kinds of projection methods have been 
proposed such as the linear-nonlinear projection method 
consisting of a PCA and the self-organizing feature map 
(SOFM) [10], linear discriminant analysis (LDA) [11], and 
uncorrelated LDA [12]. 

Another approach that is frequently deployed for 
dimensionality reduction is extraction methods based on 
the time domain and the frequency domain [14, 15]. Many 
methods have been proposed during recent decades, for 
instance, energy, variance, mean absolute value (MAV), 
zero crossing (ZC), mean and median frequency, and auto-
regressive coefficients. Due to the low complexity of 
extraction methods (e.g. MAV, ZC) compared with 
projection methods (e.g. PCA, SOFM), in this study we 
focus only on evaluating the performance of extraction 
methods based on the time domain and the frequency 
domain based on the reduction approach. Twenty-five 
state-of-the-art extraction methods are investigated. 
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However, all the studies mentioned above have 
deployed all the wavelet components or scales in the 
feature vector, whereas one of the main benefits of DWT is 
the generation of a useful subset of frequency components 
or scales from the signal of interest. Therefore, in this 
study we have investigated the usefulness of extracting 
features from individual wavelet components instead of 
extracting features from all the wavelet components [20–
21]. As a result, beneficial resolution components were 
generated and selected from the sEMG signal [21–22], 
while unwanted components and noise were efficiently 
removed [20]. 

To achieve optimal performance in the wavelet 
analysis, a suitable wavelet function must be employed 
[23]. Most studies of sEMG analysis have concluded that 
the Daubechies (Db) wavelet family is the most suitable 
wavelet for sEMG signal analysis [6, 22, 23], and in this 
study, the Daubechies orthogonal wavelets, Db1-Db10, 
which are commonly used, were evaluated. To find an 
optimal combination between the components obtained 
from the wavelet (the wavelet basis function and the 
feature extraction method), a scatter graph of the features 
in space and a statistical measurement based on the ratio of 
the Euclidean distance to the standard deviation (RES 
index) [24] were used as the evaluation tools. An 
improvement of class separability in feature space of the 
EMG features is shown, which shoud lead to an increase in 
the classification accuracy of sEMG applications. 
 
EMG signal acquisition and the experiment 
 

The representative sEMG data were recorded when 
the volunteer performed six hand motions: wrist flexion 
(WF), wrist extension (WE), hand close (HC), hand open 
(HO), forearm pronation (FP) and forearm supination (FS). 
The data were recorded from two useful forearm muscles, 
the flexor carpi radialis muscle (FCR) and the extensor 
carpi radialis longus muscle (ECRL). Two bipolar-surface-
electrodes (3M red dot 25 mm. foam solid gel) were placed 
directly on the right forearm. The electrodes were placed 
20mm apart. In the experiment, ten datasets were collected 
for each motion. The sampling frequency was set at 1000 
Hz using 16-bit data acquisition (BNC-2110, NI). A 
window size of 256 ms was used as a real-time constraint 
for prosthesis control where the response time should be 
less than 300 ms [4]. To avoid noise and the amplifying 
amplitude of the sEMG, a band-pass filter of 10-500 Hz 
bandwidth, with a CMRR of 100 dB, and an amplifier with 
60 dB gain were implemented. All the calculations based 
on the data derived from the experiments in this study were 
computed using the MATLAB software. 
 
The wavelet transform and its features 
 

The wavelet transform method can be divided into 
two types: discrete (DWT) and continuous (CWT). DWT 
was selected in this study because of its concentration on 
real-time applications. Briefly, the DWT technique 
iteratively transforms the signal of interest into multi-
resolution subsets of coefficients, and then the original 
sEMG (S) is passed through high-pass and low-pass filters, 
the coefficients of the filters depending on the wavelet 

function type, to yield both a detailed coefficient subset 
(cD1) and an approximation coefficient subset (cA1) at the 
first level. To achieve a multi-resolution analysis, 
repetitious transformation is performed. This process is 
duplicated until the desired final level is yielded. 

Different levels of wavelet decomposition (n) were 
also evaluated in the experiments with the maximum level 
limited to 8 and the fixed sample length at 256 samples. As 
an illustration, if the decomposition level was set at 4, 
DWT generates respectively the coefficient subsets at the 
fourth level approximation (cA4) and the first to the fourth 
level details (cD1, cD2, cD3 and cD4). After that each 
wavelet coefficient subset can be reconstructed to estimate 
an effective sEMG component by using the inverse 
discrete wavelet transform (IDWT) which is computed by 
using the coefficients of all the wavelet components at the 
final decomposition level. The reconstructed sEMG signal 
can then be computed from cA4 and cD1-cD4. 

To investigate the usefulness of extracting features 
from individual wavelet components instead of extracting 
them from all the components, the reconstructed sEMG 
can be defined by the inversion of the subset dependence. 
For instance, in order to obtain the estimated sEMG signal 
from the approximation coefficient subset, the 
reconstructed sEMG signal (A4) is computed by using 
IDWT with the fourth-level approximation coefficients 
(cA4). The wavelet coefficient subsets (cD1-cDn, cAn) 
and the reconstructed sEMG signals (D1-Dn, An) can then 
be used as the features of the six motions of the two 
muscles. 

In this study, the most widely used and most 
successful 25 features based on the time domain and the 
frequency domain were evaluated. The mathematical 
definition of all the features is shown in Table 1. The 
procedure adopted in the study is shown in Fig. 1. 
Comparisons of class separability for each extraction type 
were conducted to establish a suitable sEMG subset  based 
on the RES index. More details about the RES index can 
be found in [24]. 

 

 
Fig. 1. Procedure for the extraction of sEMG features from the 
raw wavelet coefficients and the reconstructed sEMG signals. 
 
Experimental results and discussion 
 

The results relating to the 4 issues mentioned above 
(wavelet components, wavelet function, decomposition 
level, and feature extraction method) are reported on and 
discussed below. The optimal wavelet decomposition level 
is discussed first because the results are not dependent on 
the type of wavelet function or the feature extraction 
method. The results showed that the best decomposition 
level is 4; hence, only the results obtained from the fourth- 
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Table 1. Mathematical definitions of 25 sEMG feature extraction 
methods. Let xn represents the nth sample of the sEMG signal (S) 
or the wavelet coefficient subsets (cDn, cAn) or the reconstructed 
sEMG signals (Dn, An) in a window segment. N denotes the 
length of the sEMG signal. wn is the continuous weighting 
window function. threshold is used to avoid low-voltage 
fluctuations or background noises. Pj is the sEMG power 
spectrum at frequency bin j. fj is the frequency of the sEMG 
power spectrum at frequency bin j. M is the length of the 
frequency bin. f0 is a feature value of the PKF. nl is the integral 
limit (nl = 20). P0 is near to the maximum value of the sEMG 
power spectrum. P is the whole energy of the sEMG power 
spectrum in a range of 10 and 500 Hz 
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level are presented. In addition, similar results have been 
reported in a number of previous studies [e.g. 6, 12, 14]. 
However, the most suitable level for the analysis of sEMG 
is the fourth level. The other three issues are discussed in 
the remainder of this section. 

Fig. 2 shows examples of characteristic signals 
computed from the three approaches described in Fig. 1 
based on the Db7 wavelet from the HC motion and the 
FCR muscle. The signals obtained from the raw sEMG 
signal (Type I), the wavelet coefficient subsets at different 
multi-resolution levels (Type II), and the reconstructed 
sEMG signals at different multi-resolution levels (Type III) 
are presented in Fig. 2. In most types of natural signals the 
low-frequency components (cA4 and A4) are generally the 
most important componenents and can be regarded as the 
characteristics of the signal, whereas the high-frequency 
components (cD1-cD4 and D1-D4) can be assumed to be 
noise. In this study, the low-frequency components (cA4 
and A4) of the sEMG contain indirect correspondence and 
also contain an irrelevant low-resolution background, 
whereas, the signals at the first and the second 
decomposition levels (cD1 and cD2), and the first and the 
second reconstruction levels (D1 and D2) are similar to the 
original sEMG signal (S). Therefore the signals cD1, cD2, 
D1 and D2 were adopted for analysis as being the most 
useful sEMG components. 

In evaluating the performance of sEMG feature 
extraction methods, class separability is a major criterion. 
Good quality class separability means that the result in 
terms of classification accuracy will be as high as possible 
with the maximum separation between classes and a 
minimum of variation in the subject experiment. In this 
study, two statistical measurement methods, a scatter graph 
and the RES index were used as the evaluation criteria to 
confirm the observations from Fig. 2. The selection of 
sEMG features was based on a statistical index because 
evaluation results based on a classifier are dependent on 
the type of classifier [15]. 
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a) 

 
b) 

 
c) 

Fig. 2. (a) DWT decomposition tree from decomposition level 4 
and the inverse transform for each subset. (b, c) Examples of the 
sEMG signal using wavelet multi-resolution analysis with Db7 
wavelet and 4-level decomposition and reconstruction of the raw 
sEMG signal (S), reconstructed sEMG signals (D1-D4, A4), and 
wavelet coefficient subsets (cD1-cD4, cA4) of HC motion from 
the FCR muscle. 
 

Fig. 3 is an example of a scatter graphs of the MAV 
features extracted from the two channels and six upper-
limb motions illustrating the distance between the two 
scatter groups and the variation of features in the same 
group. The figure shows the scatter plots of the MAV 
extracted from the raw sEMG signal (S) and the low-level 
wavelet coefficient subset and the reconstructed sEMG 
signal (cD1 and D2) which indicate a clear separation in 
data points from each motion with only a small degree of 
variation within the same group. This indicates  that the 
EMG feature vector obtained from these signals is able to 
yield good classification from the classifier. On the other 

hand, the scatter plot of MAV computed from the high-
level reconstructed sEMG signal (A4) (and also the high-
level wavelet coefficient subset, cA4) has, in comparison, 
poor class separability. However, the classification 
performance between the raw sEMG signal, the low-level 
wavelet reconstructed sEMG signals, and the low-level 
wavelet coefficient subsets are difficult to observe from a 
scatter graph. Hence, to confirm the class separability 
performance, the RES index is used to indicate the quality 
of separation. It should be noted that the values of the RES 
index for S, cD1, D2 and A, in Fig. 3, are 8.93, 10.60, 
11.11 and 5.57, respectively. 
 

 

Fig. 3. Scatter plots of the MAV feature calculated from the raw 
sEMG signal (S), the wavelet’s detail coefficient subset at the 
first level (cD1), the reconstructed sEMG signal from the cD2 
(D2), and the reconstructed sEMG signal from cA4 (A4) with six 
hand motions and two channels (FCR muscle–X axis, ECRL 
muscle–Y axis) 
 
Table 2. The optimal wavelet component and wavelet function 
for the 25 sEMG features considered in this study with their RES 
indices 

Feature extraction 
Optimal wavelet 

component 
Optimal 

WF 
RES 
index 

ZC 

D2 Db7 

12.52 

WAMP 12.22 

MAV, IEMG 11.11 

VAR, SSI, TTP, MNP 10.83 

MMAV 10.69 

SM1 10.45 

LOG 9.53 

RMS, V2 

cD1 Db10 

11.06 

V3 10.27 

SM2 10.23 

SM3 9.83 

MYOP 
D1 

Db5 12.95 

MFL Db8 9.86 

WL, AAC 

Raw - 

11.69 

DASDV 11.15 

MNF 5.48 

MDF 5.38 

PSR 4.99 

FR 3.46 

 
Table 2 shows the RES index for all features with the 

optimal wavelet function and wavelet component type.  
The experimental results show that the suitability of 

wavelet components and wavelet functions depend on the 
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type of feature (i.e. they are feature dependent). The results 
can be divided into four main groups:  

1). The first group contains most of the features based 
on the time domain and some from the frequency domain 
that are calculated based on amplitude and energy 
properties. In this group, the RES indices calculated from 
the second-level reconstructed sEMG signal (D2) with 
Db7 showed better class separability in feature space 
compared to the RES indices calculated from the original 
sEMG signal (S). The features in this group are eight time-
domain features: IEMG, MAV, MMAV, SSI, VAR, LOG, 
ZC and WAMP and three features based on the frequency-
domain: TTP, MNP and SM1. However, the frequency-
domain features determine the energy property in the same 
way as do features in the time domain. The best feature in 
this group is ZC, followed closely by WAMP, MAV and 
IEMG; 

2). The second group contains higher-order time and 
frequency domain features including RMS, V2, V3, SM2 
and SM3. The RES indices in this group register an 
improvement in class separability in feature space if 
calculated from the first-level wavelet coefficient subset 
(cD1) with Db10. The best feature in this group is RMS, 
although its performance is no better than the best features 
in the first group; 

3). The third group contains only 2 features, MYOP 
and MFL. These features perform better when calculating 
features from the first-level reconstructed sEMG signal 
(D1) with the Db8 and the Db5 wavelets. The RES index 
obtained from MYOP has the highest value (12.95); 

4). The last group contains 3 time-domain features, 
WL, AAC and DASDV, based on complexity and 4 
popular frequency-domain features, MDF, MNF, FR and 
PSR. The RES indices of features in the last group were 
different from those of other groups. The results show that 
the use of the raw sEMG signal (S) for this group was 
superior to using wavelet analysis. 

As mentioned in the introduction, the main benefit of 
DWT is that it generates a useful subset of frequency 
components, although most earlier studies have used all of 
the frequency components in the feature vector. This study 
used only the most effective components instead of using 
all the components available. These more useful resolution 
components from sEMG signal were generated and 
selected during the experiment. 

In summary, the reconstructed sEMG signals from 
the first level and the second level of the wavelet’s detail 
coefficients are most suitable for the extraction of sEMG 
features. On the other hand, other wavelet components 
contain noise and unwanted sEMG parts, and extraction of 
sEMG features from those components does not improve 
classification ability. 

In future studies, we recommend extracting sEMG 
features from the reconstructed sEMG signals from the 
first and second levels (D1 and D2) instead of using all the 
wavelet components. This would not only improve the 
accuracy of the sEMG pattern classification but also 
decrease the computational time and complexity due to the 
reduction in sub-signals. Moreover, in order to confirm the 
classification performance, misclassification rates resulting 
from the use of a classifier should be measured in future 
studies. 

Because wavelet transforms are capable of multi-
resolution, the frequency band that signals from each 
motion generate has been discussed. The results of this 
study based on decomposition down to 8 levels by using 
db7 prove that sEMG signal from different motions exhibit 
differences in their main signal energy corresponding to 
those of the muscles whose motions are measured, for 
instance, WF, WE and HC co-vary with levels D1, D2 and 
D3, HO with levels D2 and A8, FP with levels D6, D8, and 
A8, and FS with level A8. These correspondences could be 
used to develop a system for sEMG signal interpretation by 
using the signal energy distribution of the wavelet 
coefficients to enhance signal recognition. 
 
Conclusions 
 

The usefulness of successful sEMG features extracted 
from multiple-level decompositions of sEMG based on 
DWT has been investigated in this paper. Some useful 
sEMG features are recommended, for instance, a feature 
vector extracted by using the ZC, WAMP and MAV 
features of the second-level reconstructed sEMG signal 
(D2) with the Db7 wavelet, and the MYOP feature of the 
first-level reconstructed sEMG signal (D1) with the Db8 
wavelet. Their use ensures that the resulting classification 
accuracy will be as high as possible and will also be better 
than signal extraction from the original sEMG signal. The 
results of the experiment reported in this paper can be used 
in a wide class of clinical and engineering applications. 
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A. Phinyomark, A. Nuidod, P. Phukpattaranont, C. Limsakul. Feature Extraction and Reduction of Wavelet Transform Coefficients for 
EMG Pattern Classification // Electronics and Electrical Engineering. – Kaunas: Technologija, 2012. – No. 6(122). – P. 27–32. 

Recently, wavelet analysis has proved to be one of the most powerful signal processing tools for the analysis of surface electromyography 
(sEMG) signals. It has been widely used in sEMG pattern classification for both clinical and engineering applications. This study investigated 
the usefulness of extracting sEMG features from multiple-level wavelet decomposition and reconstruction. A suitable wavelet based function 
was used to yield useful resolution components from the sEMG signal. The optimal sEMG resolution component was selected and then its 
reconstruction carried out. Throughout this process, noise and unwanted sEMG components were removed. Effective sEMG components were 
extracted with twenty-five state-of-the-art features in both the time domain and the frequency domain. Two criteria were deployed in the 
evaluation, scatter graphs and a class separation index. The experimental results show that most sEMG features extracted from the reconstructed 
sEMG signal of the first and second-level wavelet detail coefficients yield improved class separability in feature space. Some features extracted 
from the sub-signals are recommended such as the myopulse percentage rate, zero crossing, Willison amplitude and the mean absolute value. 
The proposed method will ensure that the classification accuracy will be as high as possible while the computational time will be as low as 
possible. Ill. 3, bibl. 24, tabl. 2 (in English; abstracts in English and Lithuanian). 
 
 
A. Phinyomark, A. Nuidod, P. Phukpattaranont, C. Limsakul. Požymių išskyrimas ir vilnelių transformacijos koeficientų sumažinimas 
elektromiografijos atvaizdams klasifikuoti // Elektronika ir elektrotechnika. – Kaunas: Technologija, 2012. – Nr. 6(122). – P. 27–32. 

Vilnelių transformacija yra vienas iš geriausių signalų apdorojimo įrankių atliekant paviršinės elektromiografijos (pEMG) signalų analizę. Ji 
plačiai naudojama klasifikuojant pEMG atvaizdus tiek klinikinėse, tiek inžinerinėse taikomosiose programose. Panaudota tinkama vilnelių 
funkcija siekiant gauti tinkamos rezoliucijos komponentus iš pEMG signalo. Buvo parinktas optimalus pEMG rezoliucijos komponentas ir 
atlikta jos rekonstrukcija. Šio proceso metu buvo pašalintas triukšmas ir nepageidaujami pEMG komponentai. Eksperimentiniai rezultatai 
parodė, kad dauguma pEMG bruožų, išskirtų iš rekonstruoto pEMG signalo, padeda geriau atskirti klases bruožų erdvėje. Pasiūlytas metodas 
užtikrina kiek įmanoma didesnį klasifikacijos tikslumą ir mažesnę skaičiavimo trukmę. Il. 3, bibl. 24, lent. 2 (anglų kalba; santraukos anglų ir 
lietuvių k.). 


